
Keystroke Injection Detection and Mitigation

Emory Lindsey
Department of Computer Science and Information Systems

Georgia College & State University

Results
During primary testing, the value of s and k were found to be

inversely proportional for values of s ≈ 10 ms, 20 ms, …, 50 ms with
the maximum value of k ≈ 30.9 and the minimum value being k ≈ 11.5.
There was a significant number of false negatives for values of s ≈ 60
ms, 70, and 80 ms. During secondary testing, the detection model
allowed an average number of 10.8 keystrokes.

Figure 2. Primary test results (P4wnP1 A.L.O.A.)

Introduction
Keystroke injection is a hardware attack by which a USB

device is used to type a sequence of keystrokes at inhuman
speeds. Upon connection, a typical OS views such a device as a
USB HID keyboard device. Since the USB protocol does not
provide a standard for device authentication, USB buses and, by
extension, operating systems often blindly trust connected
devices regarding their advertised capabilities. The purpose of
this research is to devise a simple detection mechanism that is
capable of detecting and stopping a keystroke injection attack.

Figure 1. Visual Overview of Detection/Prevention Model

Materials
Keystroke Injection Devices:

1. Raspberry Pi Zero W (P4wnP1 A.L.O.A. image)
2. Bash Bunny

Host/Victim Machine:
Raspberry Pi 3 Model B+ (Raspbian image)

References
1. Neuner, S., Voyiatzis, A. G., Fotopoulos, S., Mulliner, C., & Weippl, E. R.: USBlock:

Blocking USB-based Keypress Injection Attacks.(2018, July 10).

2. Umphress, D., Williams, G.: Identity verification through keyboard
characteristics.International journal of man-machine studies 23(3), 263–273 (1985)

3. S. (2020, November 14). Reverse Shell Cheat Sheet. Retrieved December 16, 2020,
from
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodolog
y%20and%20Resources/Reverse%20Shell%20Cheatsheet.md

Conclusion
In order to effectively analyze the primary and

secondary test results, a few factors must be taken into
consideration. First, as mentioned in the Methods and
Results section, the values for s are approximate values. This
is the case due to the fact that the monitoring software
occasionally calculated values slightly above/below the
variable value for s. This fact coupled with how the detection
model uses savg calculated over four keystroke events helps
to explain the prevalence of false negatives as the value of s
becomes close to the threshold of 80 ms. Secondly, a value of
k ≈ 30.9 might be alarming; however, this maximum value
includes the whitespace characters found within the payload
and any keystrokes needed to launch a terminal environment
within a given operating system. In addition, many malicious
Linux-based keystroke injection payloads are themselves
longer than 30 characters. Finally, an attacker is more likely
to choose a Bash Bunny for a social engineering engagement
duce to its inconspicuous nature. Therefore, due to practical
points mentioned above and the promising results found in
secondary testing, the detection/prevention model was
discovered to be effective in a practical sense.

Methods
For primary testing, the Raspberry Pi Zero W was used to test a

range of keystroke separation timings, denoted as s, where
s ≈ 10 ms, 20 ms, 30 ms, … 80 ms. For secondary testing, the Bash

Bunny was used and was found to have a fixed value of s ≈ 10 ms.
Ten test runs were conducted for each distinct value of s and for each
injection device used, recording the average number of keystrokes
allowed for each value of s, denoted as k.

Today, we are witnessing an
increase in the number of
cases of drones flying into
restricted areas or violating
people’s privacy. The most
common methods today to
deal with violating drones
this are by jamming or simply
shooting them down without
collecting any information
about where the drone was
launched from. Our method
targets GPS-enabled drones
and not only grounds them
but also calculates the launch
coordinates by exploiting
“Return to Home” function,
which returns a drone to
launch coordinates if it
becomes out of reach. In the
proposed method we use
manipulated GPS broadcasts
to ground a drone and find
the launch coordinates

Remote controlled drones have limited
range. At the first step in our algorithm
is to find the boundaries of possible
launch coordinates. In this simulation,
1 mile range is considered. This value is
configurable.

The bi-section algorithm
looks for a sign change in
order to guess the
coordinates that can lead
drone’s speed to go to zero.
When there is a sign change
it means that we are closing
down on the root. In our
simulation, it took 7 trials to
guess the coordinates that
lead to to the x and y
components to become 0.
These are the launch
coordinates

After “Return to home” function is invoked, which can be forced by jamming. The
next step is to broadcast manipulated GPS signal guesses in attempt to ground the
drone. At the same time, the change of the x and y components of the drone’s speed is
observed. The broadcasted GPS guesses are generated following the bisection
method. In a way after every broadcasted guess, the drone’s response for this guess is
utilized to close down on the drones launch location.

What is accomplished :
Proof of concept on how
a software defined radio
transmission system
(HackRF was used) can
be used to spoof GPS
signals and how GPS
enabled devices calculate
spoofed GPS location.
Also, an algorithm is
developed that finds the
launch location by
determining the guesses
that will eventually
converge to the solution

Next step:
To test the proposed
algorithm utilizing
software defined radio
transmission system on
drone’s integrated
control circuit.
Then finally test the
system with a GPS
enabled drone in action
utilizing a software
defined radio
transmission system with
directional antennas

 By Nick Roy with
Supervision of Dr.

Hosam Alamleh

Finding the launch
location of a drone

Opt-In Attendance TrackingOpt-In Attendance Tracking
Aidan Shene, Jake Aldridge
& Dr. Hosam Alamleh
University of North Carolina Wilmington
Department of Computer Science

Introduction
	 	 Attendance tracking is important for optimizing the ed-
ucational process, and many different systems and technol-
ogies exist and have been implemented to do so. Current at-
tendance tracking methods are often time consuming which
wastes valuable class time, can require a lot of effort from the
instructor or student, and may make it easy for students to
falsify attendance. Our mobile app minimizes these issues
by creating a quick, zero-effort system for attendance which
requires user devices to be within range of the instructors,
making attendance much more difficult to falsify. Using a “lo-
cation proof” based off of the Received Signal Strength Indi-
cator (RSSI) measured for the access points in the area, our
system only requires instructors and students to activate the
app so that this proof can be created. By determining the loca-
tion of student devices only in reference to the instructor’s de-
vice, the location privacy of the user is maintained.

Ethical Concerns and Privacy
	 	 Protection against electronic surveillance is a right af-
forded under the fourth amendment and the Electronic Com-
munications Privacy Act (ECPA), the latter of which outlines
how victims can sue individuals involved in unlawful intru-
sions for damages or equitable relief.
	 In recent years there have been more calls for police forc-
es to make use of access point data, to use as evidence. While
this poses great privacy concerns, there could be many appli-
cations that routinely monitor how many devices are in an
area and when changes occur.
	 	 Due to the innate respect for users’ privacy and the in-
herent legal complications regarding performing this type of
user surveillance, we have opted for a different solution. Data
is not collected until approval is explicitly granted by the user
from the app on their device, making it required for each
class attended.

Figure 1. This mock-up showcases the main features of the app. Stu-
dents and Instructors would have two different modes; the instruc-
tor’s focused on collected attendance over a set time period and the
student’s centered around creating an individual location proof.

Wider Applications & Use Cases
	 	 The range of the radio frequency signals emitted from
Wi-Fi access points is one of the limiting factors in applica-
tions of our research. It is feasible to determine whether a de-
vice is inside of a building, classroom, or in their immediate
proximity.
	 	 In a more sizeable ecosystem, the feasibility begins to
fade. If applied to a larger environment, more manual data
collection is likely required to merit its use. This app has the
potential to scale to a large number of devices. The process
would remain the same regardless of the sample size, though
the total time to classify each device change.
	 	 The purpose of our application is not necessarily to find
exactly where a user is, but rather to definitively say where
they are not — in the classroom. The scope of our research’s
applications is limited mostly to attendance based scenarios,
whether for class, a meeting, or an event; however, it could
be used to measure the number of users in a given location.
Measurements collected could then be used to determine
whether a building is at capacity.

Figure 2. Top 10 Access Points by MAC address versus average
RSSI. The points labeled as “Reference” represent the RSSI from a
fixed location in the classroom used as a basis of comparison for the
other recorded locations — in and outside of the classroom, but in the
same building.

Figure 3. Predicted Location versus True Location. Average RSSI by
Top 10 Access Points by MAC Address per location polled. Each sam-
ple represents an RSSI, which is used to predict whether the device is
the inside or outside of the classroom. Similarity scores between a test
data point and the reference dataset were calculated to determine if
the test point was collected in or outside of the classroom.

n = 140

Acknowledgments

Amazon Web Services is a leading provider of cloud computing
technology. The company offers a wide variety of platforms to
provide top tier scalability. As an alternative to on-premise web
hosting, many companies are turning to AWS for cloud-based
hosting solutions. The shift to cloud solutions raises the question
of what security concerns are involved with cloud hosting
alternatives. AWS emphasizes automation to promote ease of use.
With the rise of new cloud computing technology, AWS network
security settings should be evaluated. This project aims to conduct
tests and analyses of network-level vulnerabilities on the Windows
Server 2016 virtual machine powered by AWS.

Introduction

Network Level Cloud Threats

Conclusions

Hannah McSwain

Results

Department of Computer Science, University of North Georgia
Research Mentors: Dr. Ahmad Ghafarian

Analyses

References

University of
North Georgia

There were no results produced by the tests to indicate that the
AWS hosted Windows Server 2016 has significant security
vulnerabilities. The only major exposure that could impact any
user would be the proper implementation of standardized security
policies. When creating a new server instance, a user should know
which procedures are being enforced on their account. With the
positive impact that cloud hosting options brings, there is still
concern about turning over on-premise hosting to a cloud
alternative. Cloud hosting can certainly reduce cost since the
payment model is based on services used; however, if factors such
as the volume of page views can make cloud options more
expensive than on-premise.

Analysis of the network level security of Microsoft’s Windows Server 2016 was conducted using Microsoft
Baseline Security Analyzer internally and Nmap running on a Kali Linux VM and MSEdge Windows 10
Flare VMs. The only concerning results produced from the Microsoft Baseline Security Analyzer were
around IIS configuration, which had not been set up on the server since it was only intended for testing and
not production. The scan revealed that automatic updates had not been configured. It would be essential to
note that if an AWS AMI is being used to host web traffic; it would need to be configured after installation
by the administrator. The scan revealed that updates need to be installed on the server, which was a
surprising result to see that a new instance would not already have the most recent updates applied.

Nmap was the other primary tool used to analyze port vulnerability. The internal IP address for the server
was 3.81.46.42, and the external IP address was 172.31.40.125. Nmap scans were conducted from within
the Windows Server 2016 VM using the internal and external IP addresses. When the scan was conducted
from the AMI VM with the external IP address, no open ports were found; however, nine open ports were
found when the external IP address was used. This is to be expected since the scan was conducted internally
on the system. The test of AWS security was also conducted by running a Nmap scan from an external Kali
Linux and MSEdge Windows 10 VM. The results of scanning both external and internal IP addresses from
the Linux VM produced similar results. When conducted in the Kali VM, no open ports were produced. The
results reported that the host appeared to be down, but the target IP was blocking ping probes if it was up.
Since the instance was running at the time of the scan, then it could be concluded that the AWS AMI was
blocking the scan attempted by Nmap from Kali Linux.

The next set of scanning through Nmap was conducted from an MSEdge Windows 10 VM running the
Flare installation. The scan ran on the external IP inside the MSEdge Windows 10 VM showed that the
machine was online, and port 3389/TCP ms-wbt-server was open. When the same scan was conducted on
the external IP, it showed that the target IP was online, and 1000 ports were filtered but found no ports were
open. A key point of analysis was found when configuring a server; the implications of standardized
policies should be fully understood to know what has been applied.

The results from the Microsoft Baseline Security Analyzer revealed
that a particular configuration that is installed in the standard
Windows Server 2016 AMI needs to be configured by the
administrator. Although additional configuration is required, the
scan conducted through Nmap did not produce results that would
put into question the network level security of the VM.

“Amazon Management Console
.” Https://Console.aws.amazon.com, Amazon Wed Services.
Definition of Amazon Machine Image provided by Amazon Web
Services.
Amazon Virtual Private Cloud. aws.amazon.com/vpc.
Nmap, nmap.org/.
“What Is a Virtual Machine and How Does It Work: Microsoft
Azure.” What Is a Virtual Machine and How Does It Work |
Microsoft Azure, azure.microsoft.com/en-us/overview/what-is-a-
virtual-machine/.
“What Is Cloud Computing? A Beginner's Guide: Microsoft
Azure.” What Is Cloud Computing? A Beginner's Guide |
Microsoft Azure, azure.microsoft.com/en-us/overview/what-is-
cloud-computing/.
“What Is Cloud Computing? A Beginner's Guide: Microsoft
Azure.” What Is Cloud Computing? A Beginner's Guide |
Microsoft Azure, azure.microsoft.com/en-us/overview/what-is-
cloud-computing/.

Microsoft Baseline Security Analyzer
results provide information about the
standard Windows Server 2016 AMI
configuration.

Results of Nmap scan on internal IP
(172.31.40.125) address conducted internally
from Windows Server 2016 revealed that 9
ports were found open. When scan was
conducted on the public IP address
(3.81.46.42) no open ports were found.

Nmap scan of public and private IP
addresses from Kali Linux Server both
produced the same results. The scan
reported that the host appeared to be
down but if it was up then it was
blocking ping probes.

Results from the scan inside the MSEdge
Windows 10 VM on the public IP address
(3.81.46.42) showed that the machine was
online and port 3389/tcp ms-wbt-server
was open. The internal IP (172.31.40.125)
scan showed that all 1000 ports were
filtered but found that no ports were open.
Despite no open ports being found the
scan did show that the target IP was
online.

Method
To best examine the Windows 2016 Server virtual machine's
network security and functionality, tests were conducted beginning
with the server's configuration. During the server setup process,
time was devoted to analyzing each step to determine what
procedures would be applied if the user chose standard
configuration. In production environments where the servers would
be used to host traffic, the administrator would need to devote time
to ensure that the settings selected during this process were secure.
Customization is entirely dependent on the intended use of the
server, whether it be storage, testing, or web hosting. For the server
in this experiment, standard storage and policies were applied
because they were in the free tier. AWS offers several options when
choosing an instance type. The tiers provide a variety of options for
storage and advanced configuration. For this project, t2.micro was
compatible with the free tier level, which included 1GB of memory,
low to moderate network performance, and one virtual CPU.

Honestvote Blockchain

Client ApplicationThe first dedicated Proof of Authority (PoA)
blockchcain network engineered to make voting
safer

Introduction

Using Unity to Develop an Interactive Fire Spread Simulation

Methodology Future Work

Materials

References

Automating Software Traceability Link Recovery and Maintenance using Word
Embeddings within a Shallow Neural Network

Marlan McInnes-Taylor, Faculty Mentor: Dr. Chris Mills

Florida State University Department of Computer Science

Abstract

In addition to code, software systems contain a
multitude of files documenting features, known
issues, legal requirements, etc. Software
traceability is the ability to link related documents
from these various sets through a process called
traceability link recovery. While previous research
has shown that established software traceability
improves the quality of projects and makes them
easier to maintain, establishing software
traceability is often a manual, arduous, and error
prone task. This research explores automating the
process of software traceability link recovery using
established techniques in machine learning. The
results demonstrate that even with minimally
tuned hyperparameters a shallow neural network
can effectively predict which text-based artifacts
within a software system are related to one
another.

Introduction

Materials and Methods

The training and test data were comprised of six datasets
commonly used to validate approaches for automating
traceability link recovery: Albergate, eAnci, eTour, iTrust,
MODIS, and SMOS. The table below shows a breakdown of
the data by project. Each of the projects involved in our
evaluation is written in either Java or C++. The code used
for parsing and cleaning the software artifacts is written in
Python. TensorFlow 2.0 was used to train and evaluate the
neural networks.

Results

Conclusions

Future Work

References

Based on the results, it is clear that word
embeddings used within a shallow network can
successfully perform metadocument classification
for the systems under study. Note that here we
report recall, precision, and F1 score in addition to
accuracy. This is because accuracy can be
artificially inflated in imbalanced data. For
example, in a dataset of 100 samples with 1
“false” label, a machine that always predicts “true”
has high accuracy, but it's low recall illustrates the
machines impracticality. These results act as a
proof on concept, and first step towards creating a
classifier which is useful outside of a purely
research context.

Our future work will focus on improving this model
by further optimizing its hyperparameters and
evaluating the model's generalizability. Initially, we
plan to perform a series of experiments to identify
the minimum data requirements using supportive
techniques such as Active Learning and cross
training. Furthermore, we will investigate how
deepening the model’s architecture impacts
performance in terms of our results metrics.

Previous studies have shown that access to
information explaining relationships between
artifacts in a system leads to higher quality
software and lower bug counts. This is largely
credited to such information improving common
software engineering tasks such as:

• program comprehension

• concept and bug localization

• defect prediction

The acquisition of traceability information is
difficult and typically an afterthought during
system construction. Consequently, hundreds or
thousands of man hours can be spent after initial
development manually inferring relationships
between artifacts that are constantly in flux as the
system changes during development and
maintenance.

To address this situation, previous studies have
attempted to either completely or partially
automate the process of establishing traceability
links between system components. In this work,
we continue that research agenda by using neural
networks to model potential links between text-
based software artifacts and predict which are
valid (i.e. two related documents) and which are
invalid (i.e. two unrelated documents).

System Loss Accuracy Recall Precision F1Score

Albergate 0.28 0.95 0.91 0.98 0.94

eAnci 0.11 0.96 0.94 0.98 0.96

eTour 0.13 0.96 0.93 0.99 0.96

iTrust 0.17 0.97 0.95 0.99 0.97

MODIS 0.29 0.93 0.94 0.92 0.93

SMOS 0.33 0.87 0.75 0.98 0.85

DATASETS USED IN THE EVALUATION

System Total Artifacts Invalid Links Valid Links Artifact Types *

Albergate 72 882 53 (5.67%) UC, CC

eAnci 194 7091 554 (7.24%) UC, CC

eTour 174 6363 365 (5.43%) UC, CC

iTrust 80 1493 58 (3.74%) UC, CC

MODIS 68 890 41 (4.40%) HighR, LowR

SMOS 167 3512 1044 (22.91%) UC, CC
* HighR = High-level Requirements, LowR = Low-level Requirements, UC = Use Cases, CC = Code

Classes

Please refer to submitted paper.

Preprocessing

Document text was first tokenized then cleaned by removing stopwords, whitespace, punctuation, and
purely numeric tokens. A Porter Stemmer was applied to all remaining terms. Once cleaned, we created
metadocuments by concatenating all possible (order invariant) pairs of documents such that the documents
in a pair belong to different sets of artifacts. Each metadocument contains data from a unique pair of
potentially related documents in the system, and was labeled as either a valid link between two related
documents or an invalid link between two unrelated ones as specified in each dataset's oracle file. As
shown in the Datasets Table, class imbalance was present in all datasets. To mitigate negative effects of
class imbalance on model performance, each dataset was balanced using the Synthetic Minority Over-
sampling Technique (SMOTE), resulting in an equal number of valid and invalid links within each dataset.

Training and Validation

A shallow Tensorflow model was implemented to classify unlabeled metadocuments as valid or invalid. The
model's first two layers perform text vectorization and transform the vectors using word embeddings. These
vectors are then pooled before being passed into a 16 node dense layer followed by the output layer. We
performed 50 trials of 10 fold cross validation with 15 epochs per fold on each dataset. Shuffled stratification
was used to sample the dataset in each fold to minimize selection bias.

Summary of Datasets
Total Artifacts 755

Potential Links 22346

Valid Links 9.46%

Invalid Links 90.54%

Implementing a Video Game Artificial Intelligence with
Deep Reinforcement Learning

Matthew Cox
Faculty Mentor: Gilliean Lee

Lander University

With recent advancements in artificial intelligence
(A.I.), it is necessary to understand research and
libraries related to Deep Learning to properly
showcase methods and applications of Deep
Learning with the latest technologies. Of these
methods, we used Deep Reinforcement Learning
and Deep Q-Networks with the libraries
TensorFlow 2.1, OpenAI Gym, and TF-Agents to
create an A.I. that performs actions to learn from
its interactions and maximize reward without
being explicitly taught about its environment.
After setting up the environment and the data
preparation pipeline, we tested the impact of
different algorithms—DQN, Double DQN, and
Dueling DQN—as well as changes to the
algorithm’s hyperparameters on the performance
of the A.I. as it plays the Atari game Space
Invaders and discovered Double DQN performed
the best over 200,000 training steps with an
average score of around 400 and a high score
around 1000. Changes to optimizer
hyperparameters had no significant impact.

Artificial intelligence has always been a popular
research topic for both academic and commercial
use in the realms of robotics and game theory.
Many different technologies and methods have
been developed, and one of the most influential
of these methods is Deep Learning, a subfield
that machine learning that uses artificial neural
networks to simulate learning by the human
brain. By using a method of Deep Learning called
Deep Reinforcement Learning that uses Deep
Neural Networks with Q-Learning, a model-free
algorithm, it is possible to create a functional A.I.
to play video games with more rudimentary
elements such Space Invaders on the Atari
without human supervision. Reinforcement
Learning by itself is a Machine Learning
algorithm that focuses on maximizing cumulative
rewards and minimizing penalties within an
indefinite environment. Deep Reinforcement
Learning only recently gained traction with the
use of research from the company DeepMind,
and with this research we were able to develop
an A.I. that can play Atari games using a Deep
Convolutional Neural Network. The A.I. uses a
simulated Atari environment wrapped within the
OpenAI Gym toolkit.

Optimizing Rewards
With Reinforcement Learning, the program’s agent makes
observations of its environment and will either receive
rewards or penalties for theses actions. Any action that
helps the agent accomplish its objective will reward it, but
any action that offers with no benefit or impedes the agent’s
progress will penalize it. When a game has a score, the
score will be used as the agent’s rewards. The algorithm
that determines the agent’s actions is called a policy, and
the optimal policy to maximize rewards is unknown at the
beginning. The A.I. must use a Q-Learning algorithm to
determine the highest Q-value—which is the summation of
its rewards from a set of possible actions the agent can
take. However, Q-Learning by itself is inefficient, as it must
retain all possible game states, possibly resulting in a larger
matrix that is expensive to traverse. Another problem of Q-
Learning by itself is that it choses random actions based on
its current state, which is impractical for large neural
networks. A combination of Deep Learning and Q-Learning
along with a replay buffer, or experience replay, is used to
solve these problems. The replay buffer will store data
discovered from previous experiences in a large table. In
our case, the replay buffer stores up to 1 million previous
experiences.

Implementing Deep Q-Learning
Due to the sheer complexity of saving every state of the game and
randomly iterating through possible actions based only on latest
experiences, only relevant states the A.I. has learned should be
used and saved. The A.I. accomplishes this by using a Deep Q-
Network that will approximate a Q-Value for each possible action
for a state and save data as [state, action, reward, next_state].
The Q-Learning algorithm to approximate the Q-value is as shown
below.

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝑟𝑟 + 𝛾𝛾max𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)
𝑠𝑠:state, 𝑎𝑎:action, 𝑟𝑟:reward, 𝛾𝛾:discount factor, 𝑠𝑠′:next state, 𝑎𝑎′:next

action

There are three main variants of a Deep Q-Network that the A.I.
uses based on techniques developed by DeepMind to measure
each variant’s effect on the overall performance of the A.I.: DQN,
Double DQN, and Dueling DQN. It is normally very time-
consuming to implement and debug these algorithms from
scratch, so we decided to use the open-source TF-Agents library
that already provides DQN and Double DQN for use with
TensorFlow and OpenAI Gym. Dueling DQN was not provided and
so we had to develop that on our own as such it lacked the tools
provided by TF-Agents.

We successfully developed a system to train the A.I. up to
200,000 training steps. From the results, Double DQN would
perform better than DQN and Dueling DQN while changes to
hyperparameters had no noticeable impact on performance.
It would be possible to apply this system to other simple
video game environments such as on Atari, but more
advanced algorithms such as Proximal Policy Optimization
would be needed for more complicated games like first-
person shooters. The A.I. is expected to perform better with
more training steps.

We compared the performance impact of DQN, Double
DQN, and Dueling DQN along with an experience replay
when trained up to 200,000 training steps. When changing
hyperparameters, we noticed no significant changes in
performance. However, Double DQN performed better than
both DQN and Dueling DQN in our tests. The average
peaked at around 400 while the high score managed to
peak around 1000, which was achieved in about half a
minute in one episode. From observation, we noticed the
A.I. developed strategies such as hiding behind cover and
hitting the purple drone that flies by near the top to gain
more points, showing the A.I. was learning how to gain
more points in Space Invaders.

Abstract Deep Reinforcement Learning Development Results

Introduction

Conclusion

Agent Training and Testing
To properly train the A.I., it is necessary to set up the
environment and import the applicable libraries and toolkits.
Deep Learning is a computational expensive process, so
received a Google Cloud research grant to use their cloud
Machine Learning servers instead of a home computer. We
set up the environment in Jupyter Notebook using a Google
Cloud GPU and installed the libraries. To start training the
A.I., we first had to create the Deep Q-Network and apply
the Deep Q-Learning algorithm and replay buffer along with
a driver and observer to collect experiences from a given
policy and display the results with a logger. The replay
buffer would progressively record the data from previous
experiences and use them to train the A.I. in further
iterations. We then programmed the main training loop that
trains the agent based on the given policy. During training,
we made changes to the algorithm’s hyperparameters —
learning rate, decay rate, and momentum—as well as the
size of the replay buffer to measure the difference in
performance. The results logged were used to determine
which Deep Q-Network variant and hyperparameters
allowed the agent to achieve the highest score in a limited
number of training steps. The overall mechanism of the
training environment is shown in Figure 1.

Figure 1. Mechanism of Deep Reinforcement Learning
Environment with TF-Agent and OpenAI Gym

Figure 2. Comparison of Average Episode Length and
Return/Reward vs. Training Steps on DQN and DDQN

We recorded both the average return and the average episode
length of DQN and DDQN. The average return is the average
score achieved over time, and the average episode length is how
many steps on average were needed to reach a terminal state, in
our case losing a life in Space Invaders.

Predicting Fall-risk Factors with Artificial Intelligence During Adaptive Locomotion in Humans

Nouran Alotaibi and Elif Sahin

Mentors: Dr. Gulustan Dogan, Dr. Michel J.H. Heijnen, and Dr. Karl Ricanek

Department of Computer Science

University of North Carolina Wilmington

Abstract
� This work is anchored by a novel locomotion dataset due to the pop-

ulation studied— young adults. This dataset is composed of 88 par-

ticipants tracked over 150 runs.

� The goal of this study was to analyze the errors in foot placement,

foot elevation, and leading factors that resulted in spontaneous con-

tact with a fixed, visible obstacle in young, healthy adults.

� We used machine learning techniques to examine patterns in the

kinematic data captured in a controlled laboratory environment for

signals of an impending fall.

Dataset
� Eighty-eight undergraduate students (age 20.07 ± 0.7 years,range

18–22 years, 32 males; height 171.7 ± 9.5 cm; weight 72.9 ± 14.3 kg)

participated in this study. Subjects were free from any impediments

to normal locomotion and had normal or corrected-to-normal vision,

as verified by self-report (1).

� Subjects walked at a self-selected pace on an 8-meter walkway, 150

times while stepping over an obstacle in the middle of the walkway.

Obstacle Contact

� Subjects were not told that obstacle contacts were of interest. At

least 150 trials were collected per subject.

� Participants in this studywere given a daily online survey to complete

that recorded frequency and circumstances of slips, trips, and falls in

the field.

� The survey data continued over a 16-week period. Sixty-two falls

were reported by 38 participants (43%).

� We merged survey data and lab foot trajectory data to create the

dataset. Twenty features have been created from the lab foot trajec-

tory study. Faller/non-faller labels in our dataset have been created

from the survey study.

� Based on survey data, participants who fell at least once during 16

weeks, were labeled as ‘Faller’. Participants who did not fall at all

were labeled as ’Non-Faller’.

Methods
Python programming languagewas used at every stage of the study. Pan-

das, numpy, ggplot libraries, matplotlib and seaborn were used for data

related operations. In addition, we ran all machine learning calculation ex-

periments with the scikit-learn library on Google Colab. 20% of the data

was used for test and 80% was used for training the models. Below are our

methodology that we followed:

1) We performed principal component analysis to examine the interrela-

tions among our set of variables as in Figure 1.

Figure 1: PCA 3D Projection

2) Feature selection has been done to remove irrelevant data and the

features that are less important in our dataset.

3) We have used Feature Importance and Correlation Matrix with

Heatmap as in Figure 2 and Figure 3.

Figure 2: Feature importance Figure 3: Correlation matrix

4) We removed features that have a correlation value greater than

or equal to 0.9, which are: ’gaitTrailBefore’, ’gaitTrailAfter’, ’gaitLeadBe-

fore’,’trailStepLength’, and ’trailMFC.’

5) Hyperparameter tuning has been used to find the optimal hyperpa-

rameters for our model parameters.

6) A model is created through the chosen machine learning techniques

which are: AdaBoost, Gradient Boosting, Gaussian Naive Bayes, Decision

Tree Classifier, KNN, Support Vector Machine (SVM) and Random Forest

Classifier.

Results
The results showed us the overall accuracy of fallers and non-fallers as

99.09% (98.69% sensitivity and 99.37% specificity) when the Gradient

Boosting algorithm was applied for classification.

Classifiers Features Accuracy Precision Sensitivity Specificity F1-Score Classification Error

Logistic Regression 5 65.33% 60.00% 42.91% 79.19% 51.09% 34.67%

AdaBoost 15 93.21% 91.72% 91.60% 94.32% 91.66% 6.78%

Gradient Boosting 20 99.09% 99.08% 98.69% 99.37% 98.88% 0.91%

Gaussian Naive Bayes 10 67.95% 60.69% 60.37% 73.15% 60.53% 32.05%

Decision Tree Classifier 5 96.85% 95.47% 96.85% 96.85% 96.16% 3.15%

SVM (polynomial) 20 92.79% 92.36% 90.10% 94.70% 91.22% 7.21%

KNN 15 91.72% 88.86% 91.08% 92.16% 89.95% 8.28%

Random Forest Classifier 10 97.54% 98.65% 95.31% 99.10% 96.95% 2.46%

Conclusion
� Our findings shows that all of the chosen data features have an im-

portant role on classifying if a subject is faller or non-faller.

� Gradient Boosting algorithm may identify ”at-risk” individuals. Thus,

obstacle crossing behavior can be generalized to falls in the real world

for young adults.

� To observe what determines a subject to be a faller based on the

given survey data, we calculated each subject’s BMI.

� From the below box plot we have found that the median weight,

median height and median BMI for faller are respectively 71.00 (kg),

168.75 (cm), and 23.62 (kg/m2).

� For non-faller, themedians are respectively 75.55, 173.00, and 24.18.

� As a result of the above analysis, the fallers tend to weigh less, they

are shorter, and hence their BMI is lower.

Figure 2: Faller (1) and non-faller (0) participants weight, height and BMI

examination illustrated as box plots

Reference
[1] M. Heijnen, H. Johannes, and S. Rietdyk, ‘‘Falls in young adults: Perceived causes and

environmental factors assessed with a daily online survey,’’ Human movement science,

vol. 46, pp. 86–95, 2016.

Developing a Data Anonymizing Software to Make Private Data
Available for Analysis

Scott Gangloff, Gilliean Lee
Lander University

Data privacy is an important policy that is necessary to keep
personal information from unauthorized access. Because of
this, data is often kept locked, is available to only certain
individuals, or can never be shared even when there are
benefits of sharing without personally identifiable
information (PII). Obtaining datasets for research is often
hard to do. This can be an issue when an organization tries to
research on datasets that include PII, and it frequently
happens at Lander University’s Institutional Research when
they research Lander University’s student datasets. A group
of student developers could not work on dashboards and
presentations with the student datasets due to their lack of
security clearance. To solve this issue, we developed a tool
that reads a data file, anonymizes certain sensitive data
fields, and exports a resulting file that can be distributed and
shared without worrying about security clearance. This tool,
called the ‘Anonymizer’, allows users to import a CSV
(Comma-Separated Values) data file, specify what features
should be anonymized, the type of data each feature is, and
relations between other features.

The Anonymizer was initially created to anonymize Lander
University’s student data set. However, we decided to make
the software more robust and compatible with almost any
other dataset. To make this possible, there must be an array
of datatype options to choose from. The user should be able
to upload a CSV file of their choice, apply their chosen
settings, process the data, and receive an anonymized dataset
in the location of their choosing. The user should also have
the option of saving a template containing the chosen data
settings for the anonymized file. If the user ever must
anonymize the same dataset again, they would not have to
fill in all the settings again.

Displaying Column Names
The center pane of the UI loads the column names of the
CSV file after uploading. For each column name, there is a
list of options the user can choose from. The user has the
option of uploading a template after uploading their CSV file.
This will disable the column names and settings process, as
the settings are pre-chosen from the template. Figure 2
shows the UI with filled out settings.
Datatype Options
A list of data types is available for each column name. Upon
choosing a data type, the UI dynamically loads criteria
related to that option. For example, when choosing the
‘Number’ datatype, the UI loads fields for maximum value,
minimum value, randomization percent, decimal places, etc.
The array of choices related to each datatype provides the
user with in-depth options for anonymizing. The user may
also set which column is the key and whether other columns
are consistent on that key. Datatypes consistent on a key
will only anonymize once, and then remain consistent
whenever the same duplicate key occurs again in the
dataset. The datatype options available include Name,
Name Composite, Number, Key, and Gender. The Name
Composite data type is used for splitting a full name into
other columns after anonymizing. Gender datatype is used if
the user needs to anonymize names on gender. This means
that male and female names will anonymize to another
name of the same gender.

File Settings
On the bottom of the UI is a list of fields where the user can specify the
name of the anonymized file, where it is saved, and if they would like
to make a template or not. The “Translate Table” option was requested
by an administrator.
Choosing this option keeps the original data in the anonymized file and
mirrors the anonymized version after each row. This is useful for quick
comparisons between original data and anonymized data. The “Key
Relation Table”

We developed a data anonymizing tool that keeps data
private while also preserving non-sensitive data to use for
analysis. This software tool provides the user with an in-
depth User Interface that allows them to specify how their
data should be anonymized. Because of this tool, our
institution can more easily share sensitive data with other
departments, and to students for data science research.

The Anonymizer currently works as intended with few
known bugs. The Anonymizer can process a 50,000-row
dataset in 3-4 minutes, or about 200 rows per second, on
an Intel i7 3.4 GHz core. The application does not use
multiple threads and utilizes just one core on a machine.
Also, the Anonymizer uses about 250MB of RAM when
handling datasets. The necessary RAM increases as the
number of rows and columns in the dataset increases,
albeit only by a marginal amount. The execution time can
vary based on processor speed, overall dataset size, and the
number of columns that are being anonymized in the
dataset. The application also makes an audio cue when the
anonymization process is completed.

Abstract

User Interface (UI) Results/ExecutionIntroduction

Conclusion

Dependencies and Reading CSV Files
The Anonymizer utilizes the OpenCSV dependency to operate.
OpenCSV is an open-source, third-party plugin that reads CSV
files efficiently.

The Anonymize Process
Each column necessary for anonymization is saved into an array
as a type of node. Nodes follow a hierarchical structure, with the
type “Base Node” as the root. The Base Node has member data
that each node must have, such as column index, column name, if
it is anonymized, etc. For each different datatype (Name,
Number, Key, etc.) there is a representative node that extends the
base node. These datatype nodes have different member data that
corresponds to what the user filled out in the UI. For example, the
“Number Node” has member data for random percent, minimum
value, decimal places, etc. The anonymizer navigates through the
CSV file and anonymizes a field accordingly if the column index
matches the node index. The anonymized value is then saved into
a duplicate of the original dataset, and the new dataset is saved
into the respective location when finished. Figure 1 shows the
workflow of the anonymization process.

Development
Name Anonymization
When a name is to be anonymized, the Anonymizer pulls a new name
from a file of over 100,000 names. If the names are to be anonymized on
gender, the anonymizer will only pull a name aligned with the same
gender as the original name. One problem with the name generation was
being limited to only 100,000 names. To combat this, the Anonymizer
generates a random full name out of the first, middle, and last name
columns in the name file. If the new name is unique, it will use that.

Optimization
Runtime was an important factor to keep in mind while developing the
software. Datasets can oftentimes become very large, with hundreds of
thousands of rows, and hundreds of columns, especially with datasets
used for data science. The student dataset we worked with had 50,000
rows and over 200 columns. The code had to be as efficient as possible,
whilst still including all the features. One way we made the code more
efficient was by reading the entire uploaded CSV file into an array upon
upload and referencing the array, rather than the CSV file itself. Array
references are much faster than creating a reference to a CSV file.

Figure 2. Anonymizer User Interface With Example Settings

Figure 1. Anonymization Process

	01 Lindsay poster
	Slide Number 1

	02 Roy poster
	03 Aldridge Shene poster
	04 McSwain poster
	Slide Number 1

	05 Neubaum poster
	06 Droubay poster
	07 McInnes-Taylor poster
	08 Cox poster
	Slide Number 1

	09 Alotaibi poster
	10 Gangloff poster
	Slide Number 1

