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Keystroke Injection Detection and Prevention 
Emory Lindsey 

Georgia College & State University 
Faculty Advisor: Dr. Gongbing Hong 

Department of Computer Science and Information Systems 
 

Keystroke injection is a hardware attack vector by which a device, usually in the form of 
a USB thumb drive, is used to type a sequence of keystrokes at relatively fast speeds. During 
device enumeration, such devices are typically enumerated as HID keyboard devices. Due to the 
absence of a standard for device authentication, the USB protocol causes a USB bus to blindly 
trust any connected device regarding its advertised capabilities [1]. Therefore, an injection device 
can easily trick the host machine into believing that it is simply a USB keyboard. The purpose of 
this research is to design a simple detection mechanism for keystroke injection attacks using 
Linux as the target platform. There are many ways to approach this problem and such approaches 
differ in terms of complexity. The approach taken here is relatively simple; however, as 
mentioned later, the detection model discussed below was found to be successful in a practical 
manner.  

 
Figure 1: Visual Representation of Detection/Prevention Model 

 
As depicted above in Figure 1, the detection model monitors all connected devices that 

are classified as keyboard devices. As shown above, any normal activity is simply passed to the 
target computer and any activity that is flagged as malicious will trigger the attack prevention 
mechanism, which will disconnect all present keyboard devices.  In regards to implementation, a 
simple kernel module handles the process of capturing keystroke events, calculating the 
keystroke separation timing, denoted as s, between two subsequent keystrokes, and sending the 
timing data to user space using the netlink socket API as mentioned by Neuner [1]. The userland 
application is then responsible for the detection and prevention of injection attacks.  Since human 
beings cannot obtain a value of s less than 80 ms [2], the detection threshold for the models is s = 
80 ms. In an effort to reduce false positives, the userland application calculates the average 
separation timings, savg, across every four keystroke events. As mentioned before, computers 
often trust the keyboard input that is received. However, despite this seemingly large 



vulnerability, successful execution requires some degree of social engineering. Due to this 
requirement, keystroke injection devices are often programmed to perform injection at inhuman 
speeds in an effort to reduce the amount of time needed to perform the attack. These two truths 
lessen the burden of detecting and stopping this form of attack. Of course, in theory, an attacker 
could modify the keystroke separation to be greater than or equal to 80 ms; however, an attacker 
usually will not have the luxury of time and so they will most likely opt for a smaller keystroke 
separation setting such as s = 10 ms. The detection model found in this research assumes that the 
attacker will opt for smaller keystroke separation timings instead of choosing timings greater 
than or equal to 80 ms.  

As a means of testing the effectiveness of the detection model, two injection devices were 
used. The first was a Raspberry Pi Zero W with a custom OS image (P4wnP1 A.L.O.A.) that 
supports injection with various values of s. The second, more inconspicuous device, was a Bash 
Bunny from Hak5.  During primary testing with the Raspberry Pi Zero W, a series of tests were 
run for s ≅10 ms, 20 ms, 30 ms, …, 80 ms. The value of s and the number of allowed keystrokes, 
denoted as k, were found to be inversely proportional for values of s ≅10 ms, 20 ms, …, 50 ms 
with the maximum value of k ≅30.9 and the minimum value being k≅11.5. There was a 
significant number of false negatives for values of s ≅ 60 ms, 70 ms, and 80 ms that likely 
resulted from the decision to take the average value of s for four keystrokes and compare this 
value to the detection threshold of 80 ms. During secondary testing with the Bash Bunny, the 
detection model showed significant promise with an average value of k = 10.8, with s ≅10 ms. 
The results of the primary and secondary tests have two significant implications regarding the 
detection model implemented in this research. Firstly, a value of k≅30.9 might be alarming, but 
it is important to remember that this includes both whitespace characters found within the 
payload and the keystrokes needed to launch a terminal environment within a given OS. In 
addition, some popular Linux-based reverse shell payloads [3] are themselves longer than 30 
characters. Second, an attacker is more likely to choose a Bash Bunny for a social engineering 
engagement due to its inconspicuous nature. Therefore, due to the promising results of secondary 
testing, the detection/prevention model was discovered to be effective in a practical sense. 
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Finding the Launch Location of a Drone 
Nick Roy 

Faculty Mentor:  Dr. Hosam Alamleh 
Department of Computer Science 

University of North Carolina, Wilmington 

 

In the past decade we have noticed an increase in the number and usage of unmanned aerial 

vehicles which are commonly known as drones. Today, many civilian drones are equipped with 

cameras and are used by a wide range of entities such as the government, corporations, individuals, 

and others.  This creates a privacy issue as it became easy to use drones to intrude upon people's 

privacy and take pictures or record videos. There have been increased efforts to control drones and 

prevent them from flying in restricted areas. This research proposes a methodology to achieve that.  

Many of the advanced drones today are equipped with a Global Positioning Systems (GPS) chip. 

This is done for the purpose of keeping track of the drone location and have the drone automatically 

to return to the launch coordinates in case it goes out of the drone remote controller range or loses 

the signal from the remote controller. This research proposes a technique to ground GPS-enabled 

drones by broadcasting manipulated GPS signals. A GPS-enabled system uses signals broadcasted 

by satellites to calculate its location. However, in today’s civilian GPS there are no source 

authentication techniques implemented, which means that current GPS systems do not check if the 

received broadcasted signals are coming from the satellite or another source. In this research, we 

analyze the possibility of locally broadcasting manipulated GPS messages for the purpose of 

grounding GPS-enabled civilian drones and calculate the coordinates where the drone was 

launched from. This is done by developing a closed-loop algorithm that adjusts the locally 

broadcasted manipulated GPS signals based on targeted drone direction of motion. 



 

Zero-effort Mobile Device Attendance Application 

Aidan Shene, Jake Aldridge, Dr. Hosam Alamleh 

University of North Carolina Wilmington Computer Science Department, Congdon Hall 2010 

 

Smartphones can sense several types of signals over the air using different radio frequency 

technologies (e.g., Wi-Fi, Bluetooth, cellular signals, etc.). Furthermore, smartphones receive 

broadcast messages from transmitting entities (e.g., network access points, cellular phone towers, 

etc.) and can measure the received signal strength from these entities. Broadcast messages carry 

the information needed in case a smartphone chooses to establish communication. We believe that 

these signals can be utilized in the context of students’ classroom attendance tracking, specifically 

because they could provide an indication of the location of a user's device. The proposed system 

aims to have students’ smartphones in the classroom to generate a “location proof" based on the 

radio frequency fingerprints scanned by the user’s device could then be used to verify users' 

locations.  

In the proposed attendance tracking system, there are two types of accounts: student 

accounts, and instructor accounts. Both account types scan for different ambient signals and use 

them to generate a location proof. Then, in the application server, machine learning is used to build 

a classifier that determines room-level proximity between the students’ and the instructor devices. 

We believe this work is important because attendance tracking is essential in education systems as 

attendance information is important to optimize the educational process. Moreover, the proposed 

system helps to preserve class time by automating this important process. 



In this research, we explore the possibility of using different radio frequency 

technologies. This is important because the operating systems of different smartphones allow for 

varying levels of access to signal information and measurements, which is done for privacy 

purposes. Due to innate respect for user privacy, and the inherent legal risks, the app will only 

collect data once the explicit approval of the user has been given by only collect user data once 

they have pressed a specific button. This type of technology has many other potential uses. 

Broadening the scope from classroom attendance, this app could be used for meetings, or large 

events. It also could be expanded to check the number of devices in a specific area. In recent 

years there have been more calls for police forces to make use of access point data, to use as 

evidence. While this poses great privacy concerns, there could be many applications for a device 

that routinely monitors how many devices are in an area and when changes occur.  

 



Network-Level Cloud Threats Project Proposal 

Hannah McSwain 
Department of Computer Science 

University of North Georgia 

Faculty Mentor: Dr. Ahmad Ghafarian 

Abstract 

Amazon Web Services is a leading provider of cloud computing technology. The company offers a wide 
variety of platforms to provide top tier scalability. As an alternative to on-premise web hosting, many 
companies are turning to AWS for cloud-based hosting solutions. The shift to cloud solutions raises the 
question of what security concerns are involved with cloud hosting alternatives. AWS emphasizes 
automation to promote ease of use. With the rise of new cloud computing technology, AWS network 
security settings should be evaluated.  This project aims to conduct tests and analyses of network-level 
vulnerabilities on the Windows Server 2016 virtual machine powered by AWS. The primary tool used for 
testing will be Nmap and  Microsoft Baseline Security Analyzer to test AWS port and sniffing 
vulnerabilities on the network level. 

Technology Needed 

• Amazon Web Services Cloud Computing account 
• AWS Microsoft Windows Server 2016 AMI 
• Oracle VM Virtual Box 
• MSEdge Windows 10 Virtual Machine 
• Kali Linux Virtual Machine 
• Nmap 
• Microsoft Baseline Security Analyzer  
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Permissioned Authority Based Blockchain Voting with 
Honestvote 

 
Author: Jacob Neubaum  

Mentors: Dr. Ngo and Dr. Liu Cui 

Computer Science Department of West Chester University 

1 Abstract 
This research explores the application of blockchain technology for electronic voting systems.  In order to 
do this, I spent over a year leading the design and engineering of a custom permissioned blockchain for 
voting, called Honestvote, which was engineered and deployed as a network of interconnected docker 
nodes.  It has currently been used for small elections such as conducting surveys.  The project is available 
at honestvote.io. 

2 Introduction 
Honestvote rigorously fights against fraud by using blockchain technology as a distributed ledger and 
relying on a unique implementation of the PoA (Proof of Authority) consensus algorithm to make sure 
that new votes are not tampered with and that the total history of elections on the network is preserved.  
Digital signatures ensure that voters are able to trace back their vote at any time to verify that it was not 
tampered with and made to the correct candidate.  Traceable ring signatures are deployed to maintain 
anonymity of voters and prevent the double spending problem (bad actors cannot vote more than once). 

3 How it works 
An institution, e.g. county or church, that wants to conduct an election on the Honestvote network must 
join the network as a trusted authority.  This requires that they pay a fixed one time fee to the network 
which deters DDoS attacks and network spam.  Secondly, the institution that requests to become a trusted 
authority must create a custom .txt DNS record to prove ownership of a domain.  Finally, a randomly 
rotating number of existing trusted authorities are selected as auditors and vote on whether or not this new 
institution should be allowed into the network.  If an institution is admitted by the network, they are 
allowed to declare elections on the Honestvote network, but are also required to perform consensus of 
election results on the Honestvote network.  If they ever lie about election data, past or present, their 
permissions on the network are revoked and their reputation as a trusted institution is publicly tarnished.  
The theory is that reputable institutions have a very strong incentive not to tamper with elections because 
the entire world would instantly be made aware and their reputation would be permanently destroyed. 
 
Election declarations are broadcast to the Honestvote network as transactions by a trusted authority.  
Declaring an election requires paying a network fee which is dependent on the amount of registrations 

https://honestvote.io/


that are allowed.  Each voter requesting registration is issued a registration transaction on the network by 
the trusted authority that declared the election.  Vote transactions are signed with a ring signature to mask 
the identity of the voter and then they are broadcast to the Honestvote network.  Voters are able to trace 
back their vote on the chain history, but the identity of the voter is never revealed.  The total election 
history is permanently stored on the blockchain and available for all interested parties, including the 
broader public to validate results.  Voters are able to conveniently access the Honestvote blockchain from 
the web via their mobile device or laptop.  Polling places can set up a device for individuals that might 
not have access to such a device or lack technical skills.  

4 Diagram 
 
 

 

5 Conclusions 
Recently, there has been a lot of controversy over whether or not current voting systems in the U.S. are 
secure, whether or not U.S. elections have been tampered with, and whether or not ballots are making it to 
the intended location [1].  Honestvote appears to be a huge improvement over conventional voting 
systems at ensuring this security.  Hopefully, Honestvote, or a system like it, is able to be implemented 
for U.S. elections in the near future. 
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Abstract: Interactive Fire Spread Simulation

Andrew Droubay1

Faculty Mentor: Dr. Anil Shende1
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Roanoke College

1 Introduction

The range of ecological diversity managed by the United States Forest Service
makes it difficult to train firefighters to work in many environments. Regional
differences in fire spread behavior can result in increased hazards as firefighters
from across the country deploy to battle fires that react in an unfamiliar fash-
ion. A brush fire in California spreads differently than a forest fire in Virginia.
Without experiencing these changes, they can be unprepared for the fire they
face, at times resulting in severe injury or loss of life.

However, there is a way to understand this behavior without first-hand expe-
rience. The United States Forest Service (USFS) has developed a physics-based
mathematical model that predicts fire spread behavior. This model has several
levels of complexity, beginning at level-set 1, which gives basic data on the time
it takes fire to reach a map cell, and continuing past level-set 4, which includes
particle cloud data. In order to better train forest firefighters, this project will
use the Unity game engine and the USFS model to create an interactive virtual
reality (VR) simulation that will allow users to experience and interact with a
scientifically-accurate forest fire. This will give them the ability to cheaply and
safely train in diverse environments.

2 Related Work

VR is increasingly used as a powerful method of training in the many fields.
It provides a way to practice precision motor control and to develop an under-
standing of an unfamiliar environment. It is prominetly used in the medical field
and is significantly effective at reducing errors in difficult surgeries [1]. Notably,
a 1997 study used VR as a training method for firefighters performing search
and rescue operations in an unfamiliar environment. The study indicated that
the VR training gave a significant improvement in search time when compared
to no training [2]. Despite being conducted over 20 years ago, this study shows
the promise of VR in relation to fire training.



2 Authors Suppressed Due to Excessive Length

(a) Landscape (b) Landscape with Fireline

Fig. 1: Aerial View

3 Our Work

Current work uses the Unity game Engine to read in a file containing information
about the landscape, fuels and fire locations. Then, Unity calls the fire models,
and reads the output. It then displays this output over time as a fireline. Cur-
rently, firefighters can put on a VR headset and controllers to enter and interact
with the terrain. Within the simulator, they have a driptorch that they can use
to directly start a fire. This interaction triggers Unity to write a new input file
for the fire model, and runs the fire models in parallel to the running simula-
tion. Once the model finishes, Unity displays the resultant fireline. More work
is in process to enable more dynamic firefighting, but the current framework is
promising.

References
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1 Abstract

In addition to code, software systems contain a multitude of files documenting features, known issues, legal requirements, etc.
Software traceability is the ability to link related documents from these various sets through a process called traceability link
recovery. While previous research has shown that established software traceability improves the quality of projects and makes
them easier to maintain, establishing software traceability is often a manual, arduous, and error prone task. This research
explores automating the process of software traceability link recovery using established techniques in machine learning. The
results demonstrate that even with minimally tuned hyperparameters a shallow neural network can effectively predict which
text-based artifacts within a software system are related to one another.

2 Introduction

Previous studies have shown that access to information explaining relationships between artifacts in a system leads to higher
quality software and lower bug counts. This is largely credited to such information improving common software engineering
tasks such as program comprehension, concept and bug localization, and defect prediction among many others [5, 10, 13].
Unfortunately, the acquisition of traceability information is difficult and typically an afterthought during system construction.
Consequently, hundreds or thousands of man hours can be spent after initial development manually inferring relationships
between artifacts that are constantly in flux as the system changes during development and maintenance [8, 14, 2]. Therefore,
even if a firm is able to establish traceability for a mission critical system, the effectiveness of that information is potentially only
temporary. To address this situation, previous studies have attempted to either completely or partially automate the process of
establishing traceability links between system components [4]. In this work, we continue that research agenda by using neural
networks to model potential links between text-based software artifacts and predict which are valid (i.e., two related documents)
and which are invalid (i.e., two unrelated documents). Preliminary results of using this technique are promising and show higher
recall and precision than its contemporaries [12, 11].

3 Materials and Methods

The training and test data were comprised of six datasets commonly used to validate approaches for automating traceability link
recovery: Albergate, eAnci, eTour, iTrust, MODIS, and SMOS. Together, these datasets represent 755 documents and 22346
potential links, 9.46% of which are valid and 90.54% are invalid. Table 1 shows a breakdown of the data by project. Each of
the projects involved in our evaluation is written in either Java or C++. The code used for parsing and cleaning the software
artifacts is written in Python. TensorFlow 2.0 was used to train and evaluate the neural networks.

3.1 Methodology

Our evaluation consists of a preprocessing, training, and validation phase.

3.1.1 Preprocessing

Document text was first tokenized using NLTK’s [3] punkt tokenizer. Then documents were cleaned by removing stopwords using
NLTK’s built in stopwords list augmented with a collection of Java and C++ keywords. Additionally, whitespace, punctuation,
and purely numeric tokens were removed from each document. Finally, a Porter Stemmer [3] was applied to all remaining terms.
It is important to note that this stemmer was chosen because it language invariant and our datasets contain both English and
Italian words. Each dataset consists of two sets of artifacts of different types (e.g., code classes and use cases), and this same
process was applied to documents in both of those sets.



Table 1: DATASETS USED IN THE EVALUATION

System Invalid Links Valid Links Artifact Types†
Albergate 882 53 (5.67%) UC, CC
eAnci 7091 554 (7.24%) UC, CC
eTour 6363 365 (5.43%) UC, CC
iTrust 1493 58 (3.74%) UC, CC
MODIS 890 41 (4.40%) HighR, LowR
SMOS 3512 1044 (22.91%) UC, CC
Total 20231 2115 (9.46%)

† HighR = High−level Requirements, LowR = Low−level Requirements,
UC = Use Cases, CC = Code Classes

Once the data was cleaned, we created metadocuments by concatenating all possible (order invariant) pairs of documents such
that the documents in a pair belong to different sets of artifacts. Therefore, each metadocument contains data from a unique pair
of potentially related documents in the system, each of these pairs is then a potential traceability link by construction. Further,
the text of each metadocument was randomly shuffled using the Numpy’s [7] shuffle method, in order to reduce potential bias
from token arrangement when setting the sequence length. Finally, each metadocument in our aggregated dataset was labeled
as either a valid link between two related documents or an invalid link between two unrelated ones as specified in each dataset’s
oracle file. This information was then used to evaluate model predictions.

As shown in Table 1, class imbalance was present in all datasets due to the large number of metadocuments (i.e., artifact
pairs). As one might expect, for a given system there are far fewer metadaocuments representing valid links than invalid ones.
To mitigate negative effects of class imbalance on model performance, each dataset was balanced using Imbalanced-Learn’s [9]
SMOTE implementation. For our evaluation, we continued synthetic metadocument generation until an equal number of valid
and invalid links was reached within each dataset.

3.1.2 Training and Validation

In order to construct a minimally complex proof of concept for the approach, a shallow Tensorflow [1] model was implemented to
classify unlabeled metadocuments as valid or invalid. The model’s first two layers perform text vectorization and transform the
vectors using word embeddings. These vectors are then pooled before being passed into a 16 node dense layer followed by the
output layer. Based on initial positive results on the SMOS dataset, we kept these hyperparameters and performed 50 trials of
10 fold cross validation with 15 epochs per fold on each dataset. Shuffled stratification via scikit-learn’s [6] StratifiedShuffleSplit
implementation was used to sample the dataset in each fold to again minimize selection bias.

4 Results

Table 2: EVALUATION RESULTS

System Loss Accuracy Recall Precision F1Score
Albergate 0.28 0.95 0.91 0.98 0.94
eAnci 0.11 0.96 0.94 0.98 0.96
eTour 0.13 0.96 0.93 0.99 0.96
iTrust 0.17 0.97 0.95 0.99 0.97
MODIS 0.29 0.93 0.94 0.92 0.93
SMOS 0.33 0.87 0.75 0.98 0.85

5 Conclusions and Future Work

Table 2 shows the results of our evaluation. Note that here we report recall, precision, and F1 score in addition to accuracy. This
is because accuracy can be artificially inflated in imbalanced data. For example, in a dataset of 100 samples with 1 “false” label,
a machine that always predicts “true” has high accuracy, but it’s low recall illustrates the machines impracticality. Therefore,
given our precision and recall results, it is clear that word embeddings used within a shallow network can successfully perform
metadocument classification for the systems under study. Future work will focus on improving this model by further optimizing
its hyperparameters and evaluating the model’s generalizability. Moreover, we plan to investigate minimizing the start-up cost
associated with employing our model to make it appealing to industry partners with greenfield systems. Initially, we plan to
perform a series of experiments to identify the minimum data requirements using supportive techniques such as Active Learning
and cross training.
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Introduction 
The development of artificial intelligence (A.I) to perform tasks without human supervision for both 
academic and commercial use has always been a popular research topic and has had many 
advancements over the years. It is important to understand the different technologies and methods to 
properly implement and showcase the practical applications of A.I. One such method of implementing A.I. 
is Deep Learning, which is a subfield of machine learning that uses artificial neural networks to simulate 
learning by the human brain. For our research, we created an A.I. to play the Atari game Space Invaders 
by using a method of Deep Learning called Deep Reinforcement Learning that allows the A.I. to learn 
from its interactions by performing actions in order to maximize rewards without being explicitly taught 
about its environment. This Deep Reinforcement Learning algorithm utilizes the libraries TensorFlow 2.1, 
OpenAI Gym, and TF-Agents to train the A.I. with the goals of achieving the highest score possible and 
showing how the score changes depending on changes to the hyperparameters and number of iterations. 
 
Deep Reinforcement Learning Development 
 
Optimizing Rewards 
With Reinforcement Learning, the program’s agent makes observations of its environment and takes 
actions and receives either rewards or penalties for these actions. Any action that helps the agent 
accomplish its goal rewards it, but any action that offers no benefit or impedes the agent’s will penalize it, 
or in the case of a game with a score, the score will be used as its rewards. The algorithm that determines 
which action the agent should take is called a policy, and the optimal policy that maximizes its rewards is 
unknown in the beginning. The A.I. must use a Q-Learning algorithm to determine the highest Q-Value—
which is the summation of its rewards from a set of possible actions the agent can take. However, Q-
Learning by itself is inefficient, as it must retain all possible game states, possibly resulting in a larger 
matrix to traverse. Another problem is that it choses random actions based on its current state, which is 
impractical for large neural networks. A combination of Deep Learning and Q-Learning along with a replay 
buffer, or experience replay, to store previous experiences is used to solve these problems. 
 
Implementing Deep Q-Learning 
The A.I. should only use relevant states it has learned, 
instead of randomly iterating through all possible actions 
and game states, and to accomplish this we implement a 
Deep Q-Network that approximates a Q-Value for each 
possible action for a state and save data as state, action, 
reward, and next state. We implemented three variants of 
a Deep Q-Network—DQN, Double DQN, and Dueling 
DQN—to measure each variant’s effect on the overall 
performance on the A.I. using the open-source TF-Agents 
library with TensorFlow and OpenAI Gym. 
 
Training and Testing the Agent 
Deep Learning is a computationally expensive process, so 
it is inefficient to use a home computer. Instead, we 
received a Google Cloud Platform research grant to use 
their cloud Machine Learning servers. We set up the 

Replay Buffer    
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experiences) 
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(DQN  

with Policy, 
Optimizer) 

Observer 

1. Calculate Action with DQN 
2. Simulate Action and Calculate Reward  
     with OpenAI Gym 
3. Train DQN with an Optimizer 
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OpenAI Gym 

(Simulate Space 
Invader) 

Observe a play 

Record a replay 

Figure 1. Mechanism of Deep Reinforcement Learning 
Environment with TF-Agent and OpenAI Gym 



environment in Jupyter Notebook using a Google Cloud GPU and installed the libraries. With the 
environment set up, we applied the Deep Reinforcement Learning algorithm along with a driver and 
replay buffer to collect experiences and display results with a logger. During the process of learning, we 
made changes to hyperparameters such as the type of optimizer and its hyperparameters—learning rate, 
decay rate, and momentum—, the size of the replay buffer, and the neural network’s parameters to 
determine which network variant and hyperparameters allowed the agent to achieve the highest score in 
the least amount of training time. The overall mechanism of the training environment is shown in Figure 1. 
 
Results 
We successfully set up the environment and trained the A.I. using DQN, Double DQN, and Dueling DQN. 
However, TF-Agents did not fully support Dueling DQN so we implemented Dueling DQN on our own, 
which took some time. We changed several hyperparameters of the algorithms and trained the A.I. for up 
to 200,000 steps each and from our data, we saw that most changes to the hyperparameters did not 
make a significant impact on the performance of the A.I., but it showed that Double DQN managed to 
perform better than both DQN and Dueling DQN to achieve an average high score of around 400 points, 
with its highest scores at around 1000 at about half a minute in one episode. We also observed that the 
AI developed new 
strategies as well as 
exploited learned 
strategies to achieve a 
higher score, such as 
hiding behind cover 
and hitting the purple 
drone that 
occasionally flies by 
near the top to gain 
extra points, showing 
the learning process of 
the AI. 
 
Conclusions 
We can conclude from these results that the A.I. has successfully undergone the process of learning 
and—at least up to 200,000 steps—Double DQN is a better algorithm to use than DQN and Dueling DQN 
and changes to hyperparameters make little short-term difference. Different algorithms and an increased 
number of training steps did not seem to significantly affect the average length of an episode, which is a 
sequence of states, actions, and rewards that ends with a terminal state such as losing a life. It’s 
expected to perform better with a greater number of training steps. It would be possible to apply the 
algorithm to most simple video game environments, such as games played on Atari, but more advanced 
algorithms like Proximal Policy Optimization would be required for more complicated games. Likewise, an 
A.I. would have to be trained to play these games for a longer period with more resources to perform at a 
basic level. 
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Extended Abstract
Falls are the third leading cause of unintentional injuries for individuals ages 18–35 years according to the CDC; although there are

many studies for falls in the elderly population, the causes and circumstances of falls for younger adults are understudied. This work
is anchored by a novel locomotion dataset due to the population studied— young adults. This dataset is composed of 88 participants
tracked over 150 runs.

The goal of this study was to analyze the errors in foot placement, foot elevation, and leading factors that resulted in spontaneous
contact with a fixed, visible obstacle in young, healthy adults.

In this study, we used machine learning techniques to examine patterns in the kinematic data captured in a controlled laboratory
environment for signals of an impending fall. This information is correlated with real-life fall potentials as assessed by a daily,
16-week survey.

Eighty-eight undergraduate students (age 20.07 ± 0.7 years,range 18–22 years, 32 males; height 171.7 ± 9.5 cm; weight 72.9
± 14.3 kg) participated in this study. Subjects were free from any impediments to normal locomotion and had normal or corrected-
to-normal vision, as verified by self-report. All subjects signed a consent form approved by the local Institutional Review Board
[1].

Subjects walked at a self-selected pace on an 8-meter walkway, 150 times while stepping over an obstacle in the middle of the
walkway. The obstacle height was set at 25% of the subject’s leg length. The obstacle was composed of a Masonite board, painted
flat black and designed to tip if contacted (similar to a hurdle). Subjects were not told that obstacle contacts were of interest. The
starting point was set to ensure the subjects would cross the obstacle with the right leg first (lead foot). At least 150 trials were
collected per subject.

Participants in this study were given a daily online survey to complete that recorded frequency and circumstances of slips, trips,
and falls in the field. In the daily survey, participants received a daily email asking if they slipped, tripped, or fell in the past 24
hours. If a slip, trip, or fall was not reported, the survey was concluded. The survey data continued over a 16-week period (112 days).
Sixty-two falls were reported by 38 participants (43%).

We merged survey data and lab foot trajectory data to create the dataset. Twenty features have been created from the lab foot
trajectory study. Faller/non-faller labels in our dataset have been created from the survey study. Based on survey data, participants
who fell at least once during 16 weeks, were labeled as ‘Faller’. Participants who did not fall at all were labeled as ’Non-Faller’.

We performed principal component analysis to examine the interrelations among our set of variables. Then, we tested some
classification algorithms based on that analysis. After statistical analysis on those selected algorithms, we chose the model that has
the best performance.

Figure 1: Correlation matrix with heatmap graph.



Feature selection has been done to remove irrelevant data and the features that are less important in our dataset. We have used
Feature Importance, and Correlation Matrix with Heatmap as in Figure 1. We removed features that have a correlation value greater
than or equal to 0.9, which are: ’gaitTrailBefore’, ’gaitTrailAfter’, ’gaitLeadBefore’,’trailStepLength’, and ’trailMFC.’ Afterwards,
hyperparameter tuning has been used to find the optimal hyperparameters for our model parameters.

Finally, a model is created through the chosen machine learning techniques which are: AdaBoost, Gradient Boosting, Gaussian
Naive Bayes, Decision Tree Classifier, KNN, Support Vector Machine (SVM) and Random Forest Classifier .

Python programming language was used at every stage of the study. Pandas, numpy, ggplot libraries, matplotlib and seaborn
were used for data related operations. In addition, we ran all machine learning calculation experiments with the scikit-learn library
on Google Colab. 20% of the data was used for test and 80% was used for training the models.

We have compared the proposed algorithms by their statistical results to identify the best algorithm for our data. We exper-
imented changing the number of features for each of the chosen algorithms. Then, we chose the best number of features for each
individual classifier. In Table 1 we wrote these in the ’Features’ column. We applied hyperparameter tuning in an effort to increase
performance for all techniques. As a result, an increase across all techniques was observed; the best classification algorithms in terms
of their precision are Gradient Boosting, Random Forest Classifier and Decision Tree Classifier.

Table 1: Classification Algorithms Results with Selected Number of Feature and with Hyperparameter Tuning
Classifiers Features Accuracy Precision Sensitivity Specificity F1-Score Classification Error

Logistic Regression 5 65.33% 60.00% 42.91% 79.19% 51.09% 34.67%
AdaBoost 15 93.21% 91.72% 91.60% 94.32% 91.66% 6.78%

Gradient Boosting 20 99.09% 99.08% 98.69% 99.37% 98.88% 0.91%
Gaussian Naive Bayes 10 67.95% 60.69% 60.37% 73.15% 60.53% 32.05%

Decision Tree Classifier 5 96.85% 95.47% 96.85% 96.85% 96.16% 3.15%
SVM (polynomial) 20 92.79% 92.36% 90.10% 94.70% 91.22% 7.21%

KNN 15 91.72% 88.86% 91.08% 92.16% 89.95% 8.28%
Random Forest Classifier 10 97.54% 98.65% 95.31% 99.10% 96.95% 2.46%

After we applied machine learning algorithms, our findings shows that all of the chosen data features have an important role on
classifying if a subject is faller or non-faller. This machine learning method that predicts falls may identify ”at-risk” individuals.
Thus, obstacle crossing behavior can be generalized to falls in the real world for young adults.

Figure 2: Faller (1) and non-faller (0) participants weight, height and BMI examination illustrated as box plots.

To observe what determines a subject to be a faller based on the given survey data, we calculated each subject’s BMI. We
compared the weight, height and BMI for fallers and non-fallers by a box plot as in Figure 2. From the box plot we have found
that the median weight, median height and median BMI for faller are respectively 71.00 (kg), 168.75 (cm), and 23.62 (kg/m2). For
non-faller, the medians are respectively 75.55, 173.00, and 24.18. As a result of the above analysis, the fallers tend to weigh less,
they are shorter, and hence their BMI is lower.

According to a prior study of retrospective fallers, only 55% of fallers were categorized as overweight or obese” [2]. The
results of our survey data shows that only 21% of fallers were categorized as overweight or obese and 45.7% of non-fallers were
categorized as overweight or obese. We believe that the participant’s age could factor into those results since in that study they have
participants who were around 70 years old. Furthermore, participants were students in a kinesiology major, which may be a more
active population given their study focus.

References
[1] M. Heijnen, H. Johannes, and S. Rietdyk, “Falls in young adults: Perceived causes and environmental factors assessed with a

daily online survey,” Human movement science, vol. 46, pp. 86–95, 2016.

[2] H. Qiu, R. Z. U. Rehman, X. Yu, and S. Xiong, “Application of wearable inertial sensors and a new test battery for distinguishing
retrospective fallers from non-fallers among community-dwelling older people,” Scientific reports, vol. 8, no. 1, pp. 1–10, 2018.



Development of a Data Anonymizing Tool to Make Private Data Available for Analysis  

Scott Gangloff, Gilliean Lee  

Department of Mathematics and Computing Lander 

University  

320 Stanley Avenue, Greenwood, SC 29649  

scott.gangloff@lander.edu, glee@lander.edu  

  

Introduction  

  

Data privacy is an important policy that is necessary to keep personal information from unauthorized access. Because of this, 

data is often kept locked, is available to only certain individuals, or can never be shared even when there are benefits of sharing 

without personally identifiable information (PII). Obtaining datasets for research is often hard to do. This can be an issue when 

an organization tries to research on datasets that include PII, and it frequently happens at Lander University’s Institutional 

Research when they research Lander University’s student datasets. A group of student developers could not work on 

dashboards and presentations with the student datasets due to their lack of security clearance. To solve this issue, we developed 

a tool that reads a data file, anonymizes certain sensitive data fields, and exports a resulting file that can be distributed and 

shared without worrying about security clearance. This tool, called the ‘Anonymizer’, allows users to import a CSV (Comma-

Separated Values) data file, specify what features should be anonymized, the type of data each feature is, and relations between 

other features.   

  

Development  

  

Dependencies  

  

The Anonymizer is written in Java using JavaFX and utilizes the Maven [1] architecture to effectively use dependencies.  

Dependencies are third party plugins that function as an extra tool that can be used when programming. In our case, the 

Anonymizer utilized the open-source OpenCSV [2] dependency, which is a tool that can read and write to CSV files faster, and 

with fewer lines of code.   

  

User Interface (UI)  

  

The UI enables a user to import a selected 

CSV file, and then immediately populates a 

scrollable pane containing the headers to 

columns of the CSV. Each header then has a 

combo box allowing the user to specify 

what kind of data is in that column. There 

are 5 data types, Unique Key, Name, Full 

Name Composite Part, and Numeric. A 

column can be marked as Unique Key 

datatype to designate it as a primary key 

field, which is useful when there are 

multiple rows in the dataset that have the 

same unique key as another row. Name type 

column can also be anonymized on gender 

if there is a gender column. For example, a 

male name will be anonymized into a   

different male name. This is useful so the anonymized dataset appears as an authentic dataset. Names 

are chosen from a source of 100,000 unique names organized by gender. The ‘Full Name Composite 

Part’ datatype allows a full name to be split into other columns, if applicable.  

There are extra features other than exporting an anonymized CSV file. Save Template feature enables a user to save and share 

their anonymization settings, so they do not have to fill out the same criteria again for other CSV files with the same headers.  

Figure 1 : Interface with a loaded sample student dataset. 



There is also the option of creating a ‘Key Relation Table’ as a separate file. This table contains the original keys followed by 

the alias keys and is useful for administrators to identify what certain keys have been anonymized. Shown in Figure 1 shows a  

UI after importing a CSV file with anonymization setting partially filled out. Shown in figure 2 is a workflow of the 

Anonymizer process.  

  

 
Execution   

We needed to keep execution time in consideration when building this software for efficiency. When handling data, sometimes 

the datasets are very large. In our situation, the student dataset had almost 50,000 rows and over 100 columns, so the program 

needed to be efficient. Currently, the Anonymizer can process a 50,000-row dataset in 3-4 minutes, or about 200 rows per 

second, on an Intel i7 3.4 GHz core. The application does not use multiple threads and utilizes just one core on a machine. 

Also, the Anonymizer uses about 250MB of RAM when handling datasets. The necessary RAM increases as the number of 

rows and columns in the dataset increases, albeit only by a marginal amount. The execution time can vary based on processor 

speed, overall dataset size, and the number of columns that are being anonymized in the dataset. The application also makes an 

audio cue when the anonymization process is completed.  

  

Conclusion  

The software we developed anonymizes datasets with PII and it has created opens avenues for research opportunities to use 

such datasets, especially for machine learning, other data sciences, and the development of applications that deal with sensitive 

data. In the future, we plan to make the application more robust by supporting more datatypes and giving more options on 

datatype criteria.  

We would like to thank Mr. Matt Braaten at Lander University’s Presidential Office for the research opportunity.  
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