

2019 Consortium for Computing Sciences in Colleges
Programming Contest
Saturday, October 26th

 Auburn University
Auburn, AL

There are nine (9) problems in this packet. Each team member should have a copy of the

problems. These problems are NOT necessarily sorted by difficulty. You may solve them in

any order.

Remember input/output for the contest will be from stdin to stdout. Stderr will be ignored.

Do not refer to or use external files in your source code. Extra white space at the end of lines is

ignored, but extra white space at the beginning or within text on a line is not ignored. Have a lot

of fun and good luck! 

Problem 1. Multiple-Choice Exam

Problem 2. Health App

Problem 3. Transpose a Matrix

Problem 4. Slicing Potatoes

Problem 5. Fly-by Photos

Problem 6. Dismal Deals

Problem 7. Kanye

Problem 8. MP3 Library

Problem 9. Day of the Year

 1

Problem 1

Multiple-Choice Exam

You are writing a computer program to grade the responses on a recent 25 question

multiple-choice exam. Each question has four options only (A, B, C, or D) and is

worth four points each. Your program should calculate the high score on the exam,

the class median, and report the question number answered most correctly and

incorrectly. The median is the middle number in a given sequence of numbers, taken as the

average of the two middle numbers when the sequence is an even number.

Input

The first line of input is a string of length 25 representing the correct answers on the key. A line

starting with a positive integer n less than 100 representing the number of exams to be graded

follows on the second line. This is followed by n lines each containing a string of length 25

representing the particular responses given by a test taker.

Output

Output your four-line summary in the exact format as seen below. The high score and median

should not be rounded and will range from a low of 0 up to a high of 100. Always use exactly

one decimal point of precision on the median value. Put a % character after both the high score

and median as well as a space on both sides of all equals sign. In the event of a tie on the

question answered most correctly or incorrectly, use the lowest question number. The first

question is numbered 1 and the last question is numbered 25.

Sample Input
CDBBACAABBABCCDCDADCBBAAB

12

CDBBDCAABBABCCDCBADCBDACB

CDBBBCAABBABCCDCDADCBBADB

BDBBACBABBABCCDCDADCBCAAB

DDBBACAABBABCADCDACCBBAAB

ADBBCDAADDABBBDCDADCBBADB

CDBBACABABABCCDCDADCBBAAB

ABABABABABABABABABABABABA

DDBBACAABBABCCDCDADCBBAAB

CDBBACAABBABCCDCDADCBBDDB

CDBBACAACBABBCDCDADCBBBBB

CCCCCCCCCCCCCCCCCCCCCCCCC

BBBBBBBBBBBBBBBBBBBBBBBBB

Output Corresponding to Sample Input
High Score = 96%

Median Score = 86.0%

Question Number Answered Most Correctly = 4

Question Number Answered Most Incorrectly = 24

 2

Problem 2

Health App

Will is upgrading to a new iphoneX and wants to download all his walking data from the health

app of his old iphone. This health app acts as a pedometer and records his daily steps and

mileage. After downloading, he would like to summarize the weekly, monthly, and year to date

mileage before importing to his new phone. Your job is to write a program which will give him

a summary of his weekly, monthly, and yearly data.

Input

The input to your program will contain at least one week of data. All inputs are floating point

values representing a distance in miles except for negative inputs which are used as delimiters.

A -1.0 means end of week, a -2.0 means end of month, and a -3.0 means end of input and

the year. A month will always follow at least four weeks of data, and may end at any point

during a week. A week may have fewer than seven readings if it falls at the beginning or ending

of the year or at the end of the input. A -3.0 may occur at any time following a -1.0.

Output

Output your summary in the exact format as seen below with counters for each week and month.

Each average mileage should be rounded to the nearest hundredth and displayed to exactly two

decimal places. A blank line should be printed before and after each month and year summary.

The year summary should include the total days recorded by the pedometer.

Sample Input
7.2 4.0 2.7 4.6 5.7 -1.0

4.9 5.1 4.9 5.6 4.9 0.3 1.1 -1.0

7.1 2.9 1.8 0.9 5.9 5.8 4.9 -1.0

4.4 4.8 5.3 6.2 4.2 1.2 1.7 -1.0

2.3 4.3 1.9 0.4 3.5 -2.0 5.2 1.1 -1.0

1.6 2.2 4.2 5.0 1.7 5.9 0.9 -1.0

3.3 2.0 4.9 5.1 4.9 5.6 4.9 -1.0

1.1 2.9 1.8 0.9 5.9 5.8 4.9 -1.0

9.8 3.4 4.8 5.3 6.2 -2.0 4.7 5.1 -1.0

1.3 3.0 3.1 3.1 4.9 5.6 4.6 -1.0

4.1 3.0 -1.0 -3.0

Output Corresponding to Sample Input
Week #1 = 4.84 mi.

Week #2 = 3.83 mi.

Week #3 = 4.19 mi.

Week #4 = 3.97 mi.

Month #1 = 3.89 mi.

Week #5 = 2.67 mi.

Week #6 = 3.07 mi.

Week #7 = 4.39 mi.

Week #8 = 3.33 mi.

Month #2 = 3.98 mi.

Week #9 = 5.61 mi.

Week #10 = 3.66 mi.

Week #11 = 3.55 mi.

Year to Date for 70 days = 3.92 mi.

 3

Problem 3

Transpose a Matrix

The transpose of a matrix is a new matrix whose rows are the columns of the original. Above is

a matrix and its transpose. The superscript T means “transpose”. Another way to look at

the transpose is that the element at row r column c in the original is placed at row c column r of

the transpose. Your job is to write a program which will produce a transpose of a matrix.

Input

The first line of input will contain a single integer n, which represents the number of test cases.

You may assume that 1 ≤ n ≤ 100. This will be followed by n test cases. Each test case consists

of a single line with a positive integer r, 1 ≤ r ≤ 100 representing the number of rows, a single

space, and a positive integer c, 1 ≤ c ≤ 100 representing the number of columns. This is followed

by r rows and c columns of positive integers in the matrix to be transposed. Each integer is

separated by a single space. Your input will be in row major order.

Output

For each matrix input, you should print out the transpose matrix in the format as seen below.

Include a blank line between each test case.

Sample Input
3

2 3

6 4 24

1 -9 8

3 3

1 2 3

4 5 6

7 8 9

2 1

5

4

Output Corresponding to Sample Input
T of Matrix 1:

6 1

4 -9

24 8

T of Matrix 2:

1 4 7

2 5 8

3 6 9

T of Matrix 3:

5 4

 4

Problem 4

Slicing Potatoes

Vera is cooking dinner. Her little sister Alice wants to help. So, Vera asks Alice to slice the

potatoes that she is cooking. Vera instructs Alice to make sure that when slicing a potato, all of

the slices have the same thickness. Alice asks why, but Vera does not answer. So, Alice begins

to wonder how big each of the slices would be when she cuts each potato into equal-width slices.

Let us write a program to help Alice calculate the volume of each potato slice. For the purpose

of this problem, let us assume that a potato is geometrically represented as an ellipsoid having

this Cartesian equation:

where the length of the potato is 2L and the width is 2W. You may assume that L > W. In other

words, this solid could be formed by revolving the ellipse

about the x-axis.

When a potato is sliced, the cuts are made along planes that are parallel to the yz plane. If we

want to cut a potato into n slices, then we need to make n – 1 cuts. The cuts are made so that

each slice of the potato has the same thickness. In addition, since the cuts are made across the

whole length of the potato, the thickness of each slice must be as follows.

An instance of this problem consists of three numbers:

 A real number representing the length of the potato

 A real number representing the width of the potato

 An integer representing the desired number of slices for this potato. You may assume

that the number of slices will be at least two, but less than 100.

Your program will compute the volume of each slice, in order from one end of the potato to the

other.

 5

Input

The first line of the input will contain P, an integer representing the number of potatoes. You

may assume that P is a positive integer less than 100. Each of the next P lines of input contains

three numbers, representing the information about one potato: the length, the width, and number

of slices. Assume one or more space characters separate the three numbers.

Output

For each potato, your program needs to print a line that says Potato <n>, where n is the

potato number and 1 ≤ n ≤ P. Underneath the potato number, the volume for each slice should

be printed on its own line.

Print information about a slice as follows:

Slice <n> = <volume>, where n is the slice number starting with 1, and the volume is

specified to exactly three decimal places of precision.

Each line of slice information needs to be indented by two spaces. In addition, there must be a

single space on both sides of the equals sign.

Sample Input
2

4.0 2.0 3

5.25 3.5 4

Output Corresponding to Sample Input
Potato 1

 Slice 1 = 2.172

 Slice 2 = 4.034

 Slice 3 = 2.172

Potato 2

 Slice 1 = 5.262

 Slice 2 = 11.575

 Slice 3 = 11.575

 Slice 4 = 5.262

 6

Problem 5

Fly-by Photos

NASA is preparing for an upcoming mission where a satellite will be taking fly-by photos of

planets in our solar system. However, before launching the probe, they have asked you to

simulate a few scenarios so they can estimate how good of a picture they could take.

They have described the situation as follows. The satellite follows a linear path, and can be

modeled like this:

Sx(t) = x0 + vx * t

Sy(t) = y0 + vy * t

where x0 and y0 are the initial position of the satellite, and vx and vy are the velocity of the

satellite in the x and y components respectively.

The planets they are modeling follow an elliptical path. That path is modeled like this:

Ex(t) = A * cos(f * t)

Ey(t) = B * sin(f * t)

where A is the orbital radius in the x-dimension, B is the orbital radius in the y-dimension, and f

is how fast the planet orbits the sun.

Given these formulae for the two objects, NASA has requested that you find the point at which

the satellite and planet are closest so that they can take the best picture possible.

To simplify computations, NASA has guaranteed that each scenario given will only last for 10

seconds. After that, you may assume that the satellite has already passed its target.

NASA would also like to remind you that to find the distance between the two targets for some

value of t, you will need to calculate:

 7

Input

The first line of input is a positive integer, less than 100 denoting the number of scenarios to

follow. The next line will consist of the parameters for each of the equations in the following

order: A, B, f, x0, y0, vx, and finally vy. All of these numbers will be formatted to three decimal

places. They can be negative, and will always lie in the range from a low of -50.000 up to a

high of 50.000.

Output

Your output you should print the closest distance achieved between the satellite and the planet

between t = 0 and t =10, formatted to five decimal places.

Sample Input
2

2.000 1.000 2.000 2.000 -2.000 0.000 0.637

2.000 1.000 2.000 3.000 -2.000 0.000 1.000

Output Corresponding to Sample Input
0.00000

1.47178

 8

Problem 6

Dismal Deals

Dismaland Autos has a unique business strategy. Every car listing on their website is displayed

as a pair dismal operations; that is, each listing is an operation displayed assuming the use of

dismal arithmetic, which is a simpler form of arithmetic developed and discussed by Neil Sloane

and colleagues as a response to the “dismal state of arithmetic skills possessed by today’s

children.” Dismal arithmetic only has two possible operations:

“There are no carries, when you add digits you just take the largest, and when you

multiply digits you take the smallest.”

Dismaland only displays listings briefly though, and purchases must be locked in by selecting

one of the operations before the listing is removed. To avoid getting a dismal deal on the car you

want, you need to program a calculator to evaluate each listing and determine which operation to

pick. Given a listing with two expressions, your calculator must evaluate them and output the

results with a <, >, or = symbol denoting their relationship.

Input

The first line of input contains a single integer n, (1 ≤ n ≤ 106), which is the number of test cases

to follow. The next n lines will each contain two pairs of integers (0 ≤ x ≤ 1010-1) separated by a

space. Each pair of integers is separated with a dismal operator, either + or *, indicating the

operation to be performed.

Output

For your output, you should print the comparison of the two operations. The result on the left

will either be <, >, or = to the result on the right. Your output should be the first result, the

correct comparison symbol, and the second result with a single space between each of these three

items.

Sample Input
3
12*10 11*10
314*5 301+15
11*11 11+6

Output Corresponding to Sample Input
110 = 110
314 < 315
111 > 16

 9

Problem 7

Kanye

Kanye has finally decided what he really loves most in this world...

himself. He loves reading, but what he loves most is... himself.

Some texts just really are not about Kanye that much, so he has asked

you to fix that for him. Basically, he needs you to replace pronouns

with "Kanye", so that the text talks more about Kanye.

However, the thing that Kanye loves second most is... grammar. So,

he has asked you to ignore the pronoun "I" since replacing that might mess up subject verb

agreement, which Kanye does not like. To help you out, Kanye has provided a table of how to

replace pronouns.

Input
Input will start with a single number telling how many lines will be in the text. The next n lines

will contain text for you to "fix". Each line will be at most 80 characters in length. Note that case

does not matter, and there can be punctuation in the string. Also, note that a word is defined as a

sequence of alphanumeric characters, which means that punctuation defines a word boundary.

Output

For your output, you should simply print out the provided text, with the specified replacements

applied.

Sample Input
2

He gave that to her

is that your cup or mine

Output Corresponding to Sample Input
Kanye gave that to Kanye

is that Kanye's cup or Kanye's

Original Replaced

me Kanye

you Kanye

she Kanye

her Kanye

he Kanye

him Kanye

my Kanye's

mine Kanye's

your Kanye's

yours Kanye's

hers Kanye's

his Kanye's

 10

Problem 8

MP3 Library

You are parsing through a massive music library of MP3 files from multiple albums of your

favorite artist. You want to develop a program which will quickly summarize the total songs and

time you possess of that artist as well as a summary by album.

Input

The input is in a very specific format consisting of two or more songs. Each line contains

exactly five words that describe a song of your favorite artist in your MP3 library as follows.
Title Time (m:ss) Album Genre Track

None of the words have spaces -- where there should be a space, there is instead an underscore.

Track is a primary key, and you may assume no album has songs with the same track number.

The last line of input will be a line with string -1, and should not be processed.

Output

Your program should first print out the total MP3 files in your collection followed by the total

time as seen below. This should be followed by a blank line. This is followed by the name of

the album, a colon, a space, the number of songs, a comma, a space, and total time for that album

in the format m:ss. Album names should be appear sorted by title in ascending order.

After each album, you will print out the title of each song on that album, sorted by track number.

The format of each of these lines will be a single space, the track number, a period, a space, the

song's name, a colon, a space and the song's time. All underscores should be turned back into

spaces. There should be no blank lines in the output after the one on the second line.

Sample Input
Down_In_Brazil 6:07 Naima Jazz 4

Naima 7:49 Naima Jazz 6

Naima 8:38 Eastern_Rebellion Jazz 2

This_Guy's_In_Love_With_You 8:10 Naima Jazz 2

-1

Output Corresponding to Sample Input
4 MP3 files, 30:44 of time

Eastern Rebellion: 1, 8:38

 2. Naima 8:38

Naima: 3, 22:06

 2. This Guy's In Love With You 8:10

 4. Down In Brazil 6:07

 6. Naima 7:49

 11

Problem 9

Day of the Year

We want to write a program which takes a date in a format like 8/26/19 and tells us which

numerical day of the year out of 365 it represents. To help us with this, use this classic song

which helps you remember the number of days in a month.

30 days has September,
April, June and November

All the rest have 31
And February’s great with 28

And Leap Year’s February’s fine with 29

Remember that a leap year is defined as follows.

Every year that is exactly divisible by four is a leap year, except for years that are exactly

divisible by 100, but these centurial years are leap years if they are exactly divisible by

400. For example, the year 1700 is not a leap year, but the years 1600 and 2000 are.

In addition to calculating the day of the year a date represents, we also want to know which day

of the week it represents. Zeller's congruence is an algorithm devised by Christian Zeller to help

us calculate the day of the week for any Gregorian calendar date. Zeller's congruence relies on

the following quantities: J is the century (19, for example if the year input is 1998), K is the

year within the century (98, for example if the year input is 1998), m is the month (where

March is 3, April is 4, etc.), q is the day of the month. The day of the week is determined by

this formula:

h = (q+26(m+1)/10+K+K/4+J/4+5J) mod 7

where the results of all divisions are truncated. The value of h will lie between 0 (Saturday) and

6 (Friday). Note that the expression a mod b yields the remainder produced by a ÷ b.

Zeller's congruence assumes that January and February are treated as months 13 and 14 of the

previous year; this affects the values K and m, and possibly the value of J. That is, January will

never be a 1 and February a 2 (rather they are special cases where January will be 13 of the year

prior and February 14 of the year prior).

 12

Input
The first line of input contains a single integer n, (1 ≤ n ≤ 1000), which is the number of test

cases that follow. Each test case consists of a single line of input containing a string. Each

string is of length n, (1 ≤ n ≤ 80). The string will have the form month/date/year

representing a valid date where month is in the range [1,12], date is in the range [1,31], and year

is in the range [1600, 2100].

Output

For each test case, generate one line of output showing the date input followed by its day of

week and its numerical day of the year in the exact format shown below. If the day of the year

ends in a 1, follow it with the suffix st. If it ends with a 2, follow it with the suffix nd. If it

ends with a 3, follow it with the suffix rd. For all others, follow it with the suffix th.

Sample Input
5

6/12/2019

1/2/2020

3/1/2020

3/1/2019

12/31/2020

Output Corresponding to Sample Input
6/12/2019 is a Wednesday and the 163rd day of the year.

1/2/2020 is a Thursday and the 2nd day of the year.

3/1/2020 is a Sunday and the 61st day of the year.

3/1/2019 is a Friday and the 60th day of the year.

12/31/2020 is a Thursday and the 366th day of the year.

