

2012 Consortium for Computing Sciences in Colleges

Programming Contest
Saturday, November 3rd

 Southern Polytechnic University
Marietta, GA

There are eight (8) problems in this packet. Each team member should have a copy of the

problems. These problems are NOT necessarily sorted by difficulty. You may solve them in

any order.

Remember input/output for the contest will be from stdin to stdout. stderr will be

ignored. Do not refer to or use external files in your source code. Extra white space at the

end of lines is ignored, but extra white space at the beginning or within text on a line is not

ignored. An extra blank line of output is ignored, but blank lines at the beginning or

between lines of text are not ignored.

Have Fun & Good Luck! 

Problem 1. Nth Largest Value

Problem 2. Fifth Grade Math

Problem 3. Breakfast

Problem 4. XOR Reduction

Problem 5. Winning Goal

Problem 6. Conversions

Problem 7. Tweening

Problem 8. Balanced

 1

Problem 1

Nth Largest Value

For this problem, you will write a program that prints the Nth largest value in a fixed sized array

of integers. To make things simple, N will be 3 and the array will always have 10 decimal integer

values.

Input

The first line of input contains a single integer n, (1 ≤ n ≤ 1000), which is the number of test

cases that follow. Each test case consists of a single line containing the test case number,

followed by a space, followed by ten decimal integers whose values are between 1 and 1000

inclusive. Each of the ten integers will always be separated by a single space.

Output

For each test case, generate one line of output with the following values: the test case number, a

space, and the 3
rd

 largest value of the corresponding 10 integers.

Sample Input
4

1 1 2 3 4 5 6 7 8 9 1000

2 338 304 619 95 343 496 489 116 98 127

3 931 240 986 894 826 640 965 833 136 138

4 940 955 364 188 133 254 501 122 768 408

Output Corresponding to Sample Input
1 8

2 489

3 931

4 768

 2

Problem 2

Fifth Grade Math

In fifth grade, students are presented with different ways to calculate the Least Common Multiple

(LCM) and the Greatest Common Factor (GCF) of two integers. The LCM of two integers a

and b is the smallest positive integer that is a multiple of both a and b. The GCF of two non-zero

integers a and b is the largest positive integer that divides both a and b without remainder. For

this problem you will write a program that determines both the LCM and GCF for positive

integers.

Input

The first line of input contains a single integer n, (1 ≤ n ≤ 1000), which is the number of test

cases that follow. Each test case consists of a single line of input containing two positive

integers, a and b, (1 ≤ a,b ≤ 1000) separated by a space.

Output

For each data set, you should generate one line of output with the following values: the data set

number, a space, the LCM, a space, and the GCF.

Sample Input
3

5 10

7 23

42 56

Output Corresponding to Sample Input
1 10 5

2 161 1

3 168 14

 3

Problem 3

Breakfast

Chip loves going to Panera for breakfast. He always gets the same thing every morning: a

medium cup of coffee and a pastry of some sort. He doesn’t always get the same pastry, but he

does only pick from a few choices, like a cinnamon roll, or bagel.

To keep his breakfasts a little more exciting, he’s decided to never get the same thing twice in a

row. So if he gets a cinnamon roll on Tuesday, he won’t get one on Wednesday (but he can get

one on Thursday). Your job is to calculate how many different ways Chip can have breakfast,

given the number of types of pastries he’s willing to eat and how many days.

For instance, if Chip wants to only eat a bagel, danish, or cinnamon roll over three days he could

eat in the following pattern: bagel, danish, roll, and then danish. However, he doesn’t have to eat

all of the pastries, so he could eat like this: roll, danish, roll, and then danish. Chip only requires

that he doesn’t eat the same thing twice in a row.

Input

The first line of input will contain an integer n telling how many cases will follow. The next n

lines will contain an integer p, (1 ≤ p ≤ 100), and another integer d, (1 ≤ d ≤ 7). p is how

many types of pastries that Chip will eat, and d is the number of days to calculate. p and d are

separated by a single space.

Output

For each line of input, you should output a value k, which is the number of different ways Chip

can have breakfast for that input.

Sample Input
3

2 3

3 2

3 4

Output Corresponding to Sample Input
2

6

24

 4

Problem 4

XOR Reduction

You’ve been designing a digital logic circuit as of late and want to prune it down some to make

it more manageable. Your circuit consists only of XOR gates with two inputs each, and some

static inputs of true and false. Recall that the XOR outputs true if and only if one of the values is

true and not the other. If both values are true or both values are false, the XOR gate outputs false.

Input

The first line of input contains a single integer n, (0 ≤ n ≤ 1000), which is the number of gate(s)

in the circuit. This is followed by n line(s) each with three values on it separated by a single

space. The first value will be the index k of the gate (0 ≤ k ≤ n-1). The second value will be

either an index of a gate whose output connects to it or a T or F value indicating a static input.

The third value will be in the same format as the second: an index for a gate or a T/F value (the

second connected value to the gate).

This is followed by a line that starts with a gate index. For this gate, you should calculate the

output. You are guaranteed there will be no cycles in the circuit and that the last index provided

can be calculated.

The last input case will have n = 0. Do not process this case.

Output

You should print out either T or F for whether the gate outputs true or false.

Sample Input
1

0 T T

0

2

0 F T

1 0 F

1

0

Output Corresponding to Sample Input
F

T

 5

Problem 5

Winning Goal

In team sports, every player has an essential role to play. But when looking back on an exciting

game, one of the greatest highlights is the goal that clinched the victory. In this problem, you

will write a program that reads a list of goals scored during several different hockey games. For

each game, you are to determine its final score and the name of the player responsible for scoring

the winning goal.

We define the winning goal of a game as follows. If the winning team scored W goals, and the

losing team scored L goals, then the winning goal is the (L+1)
st
 goal scored by the winning team.

For example, if Los Angeles beat Phoenix by a score of 6 to 3, then LA’s 4
th
 goal is the winning

goal.

Also note that the order in which the goals are scored does not matter. Phoenix could have

scored all of its goals before LA began scoring, or vice versa. The winning goal is always the

(L+1)
st
 goal scored by the winning team.

You may assume that there was at least one goal scored in each game, and that no game ended in

a tie.

Input

The first line of input is of the form :

 n games

and indicates the number of games. There will always be at least two games, but no more than

20. Each game is introduced by a line of the form:

Game <n> <team> vs <team>

where <n> is a positive integer, and <team> is a 3-letter abbreviation. Do not assume that the

order in which the teams are identified has any bearing on which team won the game. The

remaining lines of a game identify goal events. Each such line has this format:
<2 spaces> <team> (<player number>) <player name>

 6

These lines will be indented by two spaces, and indicate the name (abbreviation) of the team that

scored the goal, followed by the number and name of the scoring player. The player number is

given inside parentheses. Note that the player’s name may contain several words, but does not

extend past the end of the line.

The end of input is signified by an asterisk given at the beginning of a line.

Output

For each game, your program needs to print a line of information, giving the game number, the

score, and the name of the player who scored the winning goal. The format must be:
Game <n>, <win team> <win score> <lose team> <lose score>, winning goal by <player>

Note that your program must determine which team won the game, and output the winning

team’s abbreviation and score before those of the losing team. At the end of the line, print the

player’s name but not the player’s number. Also, note the commas required in the output format.

Sample Input
2 games

Game 1 TOR vs TBL

 TOR (14) Matt Stajan

 TBL (16) Dixon Ward

 TBL (4) Vincent Lecavalier

Game 2 OTT vs MTL

 MTL (46) Andre Kostitsyn

 MTL (21) Chris Higgins

 MTL (46) Andre Kostitsyn

 OTT (20) Antoine Vermette

 MTL (51) Francis Bouillon

 MTL (79) Andrei Markov

 MTL (54) Mikhail Grabovski

 MTL (6) Tom Kostopoulos

 OTT (15) Dany Heatley

 OTT (28) Martin Lapointe

 OTT (15) Dany Heatley

 OTT (19) Jason Spezza

*

Output Corresponding to Sample Input
Game 1, TBL 2 TOR 1, winning goal by Vincent Lecavalier

Game 2, MTL 7 OTT 5, winning goal by Mikhail Grabovski

 7

Problem 6

Conversions

Conversion between the metric and English measurement systems is relatively simple. Often, it

involves either multiplying or dividing by a constant. You must write a program that converts

between the following units:

Input
The first line of input contains a single integer n, (1 ≤ n ≤ 1000), which is the number of test

cases that follow. Each test case consists of a single line of input containing a floating point

(double precision) number, a space and the unit specification for the measurement to be

converted. The unit specification is one of kg, lb, l, or g referring to kilograms, pounds, liters

and gallons respectively.

Output

For each test case, you should generate one line of output with the following values: the test case

number as a decimal integer (start counting at one), a space, and the appropriately converted

value rounded to 4 decimal places, a space and the unit specification for the converted value.

Note that the common method for rounding should be used. If the digit in the place you are

rounding is followed by 0, 1, 2, 3, or 4, round down. If it is followed by 5, 6, 7, 8, or 9, then

round up.

Sample Input
5

1 kg

2 l

7 lb

3.5 g

0 l

Output Corresponding to Sample Input
1 2.2046 lb

2 0.5284 g

3 3.1752 kg

4 13.2489 l

5 0.0000 g

 8

Problem 7

Tweening

You’ve been using jQuery for all your web development needs lately,

and you were saddened to discover that despite all of jQuery’s bells and

whistles, jQuery doesn’t allow color animation. For many CSS

properties, like opacity, height, width, etc., you can specify a start and

stop point for the animation and a time it takes to do the animation and

jQuery will handle the rest. With colors, this just isn’t the case.

Being the resolute programmer that you are, you’ve decided to write your own jQuery extension

to do color in-betweening. You’ve been reading the API, and you’ve discovered that jQuery

uses linear interpolation. So given two hex colors and a duration, you need to take each color

component separately and interpolate linearly. Then, you’ll need to combine them back again

into an HTML color of the same format as the originals. However, the result of interpolation

might not be an integer, so you have decided to always truncate to an integer.

Consider the case with #ff0000 (red) and #00ff00 (green) with a duration of 5000

milliseconds in length, and the middle time to interpolate for was 2500 milliseconds, the color

would be #808000. This is because you are halfway between the start and stop time, so the red

component will be halfway between ff (255) and 00 (0) which is 127.5 (which we truncate to

127, giving 7f in hex), and the green will be halfway between 00 and ff giving the same result.

The blue remains 0 because both endpoints are 0.

Input
Input will consist of a single line with an integer n, telling how many cases will follow. The next

n lines will each have four tokens separated by a single space : a start hex color, a stop hex

color, a duration time, and a middle time to calculate for. The duration time is guaranteed to be

positive, and the middle time between 0 and the duration time.

Output

For your output, you should print the interpolated hex color on a single line. If during

interpolation, the values become fractional, you should round to the nearest integer.

Sample Input
3

#ff0000 #00ff00 5000 2500

#ffffff #000000 100 30

#ff6666 #6666ff 1000 800

Output Corresponding to Sample Input
#7f7f00

#b2b2b2

#8466e0

 9

Problem 8

Balanced

We want to write a program that takes a string of opening and closing parentheses and checks to

see whether it’s balanced. We have exactly two types of parentheses for this problem: round

brackets: () and square brackets: []. Assume that the string doesn’t contain any other characters

than these. This means no spaces, digits, letters, or other symbols.

Balanced parentheses require that there are an equal number of opening and closing parentheses.

It requires that every opening parenthesis be closed in the reverse order opened. For example,

([]) is balanced, but ([)] is not. It also requires that no closing parenthesis appears before an

opening parenthesis.

Input
The file contains a positive integer n and a sequence of n strings of parentheses, one string per

line. Each string is of length n, (2 ≤ n ≤ 80). You may assume each string contains only

parentheses of type () and [], and no other characters.

Output

Output each input string in the format below indicating whether or not it is balanced.

Sample Input
8

()

[]

([])

([()[]()])()

(([()])))

)(

(()(())())

([)]

Output Corresponding to Sample Input
() is balanced

[] is balanced

([]) is balanced

([()[]()])() is balanced

(([()]))) is not balanced

)(is not balanced

(()(())()) is balanced

([)] is not balanced

