

2011 Consortium for Computing Sciences in Colleges

Programming Contest
Saturday, November 12th

 Furman University
Greenville, SC

There are eight (8) problems in this packet. Each team member should have a copy of the
problems. These problems are NOT necessarily sorted by difficulty. You may solve them in
any order.

Remember input/output for the contest will be from stdin to stdout. stderr will be
ignored. Do not refer to or use external files in your source code. Extra white space at the
end of lines is ignored, but extra white space at the beginning or within text on a line is not
ignored. An extra blank line of output is ignored, but blank lines at the beginning or
between lines of text are not ignored.

Have Fun & Good Luck! 

Problem 1. SMILE! :-)

Problem 2. Look and Say

Problem 3. Magic Clocks

Problem 4. CCSC Lottery

Problem 5. A Mathematical Exercise

Problem 6. Curve Killer

Problem 7. Josephus

Problem 8. Word Count

 1

Problem 1
SMILE! :-)

September 19, 1982 — On this day, a Carnegie Mellon University computer science professor
named Scott E. Fahlman posted a smiley face :-) on an electronic message board.

Not just content to remain a frozen smirk, it has learned to wink ;-) and stick out its tongue :-p.
Sometimes it gets sad :-(or confused :-S, and sometimes it's scared =:-0 but most of the time it's
cheerful :-D.

As it grew older, it had its first kiss :-* and smoked its first cigarette :-Q and even grew its hair
out &:-). It's shown its fashion sense, too, sporting sunglasses B-) and baseball caps d:-), and
even the occasional bow tie :-)8.

Your job is to count the number of original smiley faces in a single line of input. That is, the
number of times the substring “:-)” occurs.

Input
Input consists of a single string of length n, (2 ≤ n ≤ 80).

Output
Output the total times the substring “:-)” occurs on a given line of input. The output should be
formatted exactly as shown below.

Sample Input
From: <Fahlman@Cmu>:-D :-) Read it sideways::-)-) ;-)Happy:-)8 Coding!

Output Corresponding to Sample Input
Smiley Count = 3

 2

Problem 2
Look and Say

The look and say sequence is defined as follows. Start with any string of decimal digits as the
first element in the sequence. Each subsequent element is defined from the previous one by
"verbally" describing the previous element. For example, the string 122344111 can be described
as "one 1, two 2's, one 3, two 4's, three 1's". Therefore, the element that comes after 122344111
in the sequence is 1122132431. Similarly, the string 101 comes after 1111111111.

Notice that it is generally not possible to uniquely identify the previous element of a particular
element. For example, a string of 112213243 1's also yields 1122132431 as the next element.

Input & Output
The first line of input will be a number n, (2 ≤ n ≤ 20), telling how many cases are to follow.
The next n-lines consist of a number of cases. Each case consists of a line of up to 1000 digits.
For each test case, print the string that follows the given string.

Sample Input
3
122344111
1111111111
12345

Output Corresponding to Sample Input
1122132431
101
1112131415

 3

Problem 3
Magic Clocks

Andy is simply fascinated by clocks! In fact, he finds it hard to focus on his grading because he
stares at his Mickey Mouse clock all day! So, to inspire him to grade his computer science
programs he has devised a method to keep him on task. He will only look at the clock at
“magical” times. A magical time is a time at which the angle between the hour hand and the
minute hand is equal to the angle between the minute hand and the second hand on Andy's
Disney clock.

Andy is so entranced by his clock that he just can't wait for the next magical time. Your task is
to calculate the soonest magical time, given some time in the day. An important feature of
Andy's analog clock is that it is not continuous, i.e. it does not smoothly flow into the next time.
When the second hand ticks to 0, the minute hand ticks to the next minute, rather than
continuously move. This is also the case with hours.

Input
The first line of input will be a number n, (2 ≤ n ≤ 20), telling how many lines of input are to
follow. The next n-lines will contain a time in the HH:MM:SS format at the start of the line.

Output
For each time input, you should output “The next magical time is s seconds away.”
If the time is already magical, then you should print, “Look Andy, it’s a magical
time!” If s is exactly one, print second rather than seconds. You may assume the next
magical time is guaranteed to be within the next minute.

Sample Input
5
12:00:00
12:00:01
06:14:39
07:29:34
01:59:00

Output Corresponding to Sample Input
Look Andy, it’s a magical time!
The next magical time is 59 seconds away.
The next magical time is 19 seconds away.
The next magical time is 1 second away.
The next magical time is 5 seconds away.

 4

Problem 4
CCSC Lottery

This year CCSC has decided to find the winning numbers of the CCSC Lottery using a computer
program. The winning numbers will be drawn from a bowl of balls. Each ball in this bowl has a
color and a number. To decide the winning numbers, first we will construct chains of balls. Each
chain should contain a ball from each color. That means if we have only three colors, then each
chain should contain exactly three balls (one from each color).

For each such chain, the value of the chain is defined as the maximum difference between the
numbers on the balls in the chain. For example, if we have a chain with three balls: Red with
number 10, Green with 15, and Blue with 17, then the value of the chain will be 7 which is the
maximum difference between 10, 15, and 17. Now the winning numbers should be constructed
using the chain with the minimum value. The winning numbers should be written as the
numbers from the balls in the chain in ascending order. Consider the following example.

The chains and their corresponding values for this example will be as shown below.

5 (Blue) – 20 (Red) – 31 (Green) : Value 26
17 (Blue) – 20 (Red) – 31 (Green) : Value 14
20 (Red) – 31 (Green) – 39 (Blue) : Value 19
31 (Green) – 39 (Blue) – 47 (Red) : Value 16
39 (Blue) – 47 (Red) – 50 (Green) : Value 11

The last chain has the minimum value. So the winning number will be 39 47 50. You can
assume that there will be exactly one chain with the minimum value.

Input
The first line of input will be n and m where n is the number of colors and m is the number of
balls in each color. The next n * m lines will describe each ball in the input in the following
format.

Number Color

Number and Color will contain 1 more spaces between them. To simplify the input, each color
will be represented by a number starting with 0.

Output
Your program should output the winning numbers of the one winner. Write the numbers from
the chain with minimum value in ascending order. Separate each number by a single blank
space.

 5

Sample Input
3 3
5 0
20 1
72 2
47 1
39 0
31 2
17 0
50 2
51 1

Output Corresponding to Sample Input
39 47 50

 6

Problem 5
A Mathematical Exercise

Professor X has made a New Year's resolution to get into better shape. To that end, he decides to
spend his lunch hour running on a treadmill. Prof. X soon discovers that running in place is quite
boring and he searches for a math problem to reduce the tedium.

One day while running, he notices that sometimes the time elapsed and miles traveled are
similar. For example, after running a minute and sixteen seconds, the digital readout for time
elapsed is 1:16, while the distance traveled reading is 0.116 miles. He wonders how often this
type of similarity occurs during his runs. He defines the readings as similar if:

(minutes elapsed) + (seconds elapsed)/100 = 10 × (miles traveled)

where miles traveled = speed × (time elapsed). Your task is to find all similar readings.

Input
The first line of input is an integer T, (2 ≤ T ≤ 20), representing the number of test cases.
Each test case will begin with n, (1 ≤ n ≤ 20), the number of segments during the run. The
next n-lines of input will each correspond with one segment. A segment will consist of a line
with two inputs, s and d, separated by a single space. The first s is a floating-point value
representing Prof. X's running speed s in miles per hour for duration of d seconds where d is a
positive integer. Prof. X never runs at the same speed for more than 30 minutes.

Output
For each test case, output the run number followed by, in ascending order, the times rounded to
four decimal places when a similar reading occurred. If the readings are similar throughout an
interval, only report the beginning time followed by an asterisk. Note that there is a special
speed which is 3.6 mph. If the readings are similar and the speed of the treadmill is 3.6 mph,
then the readings will remain similar until the start of the next minute.

Sample Input
3
2
5.0 90
8.0 90
2
6.0 60
3.6 300
1
8.0 900

Output Corresponding to Sample Input
Run #1: 0:00.0000, 1:34.0909, 2:06.8182
Run #2: 0:00.0000, 1:00.0000*
Run #3: 0:00.0000

 7

Problem 6
Curve Killer

Bob has finally graded his assembly tests and is passing them back out to his class.
Unfortunately (but unsurprisingly), the grade average is much lower than it should be. Being the
generous professor he is, he informs his students that he will curve the grades. This is how he
will do so. Given the set of grades, we can calculate the average grade as follows:

We can also calculate the standard deviation of the set in this manner.

Given a new standard deviation and mean, we can scale the points such that the data set’s mean
and standard deviation change to this new value. Your job is to take the data set, and alter it such
that the standard deviation and mean are changed to the new provided values.

Input
The input will begin with a line containing a number n, (0 ≤ n ≤ 20), representing the number
of students. The next line will contain two floating point numbers separated by a single space,
the new mean and standard deviation in that order. This is followed by n lines each containing a
student’s integer grade. The last line will contain an n value of 0. Do not process this case.

Output
For each test case, you should print out each new grade on a new line. Print the grades in sorted
order. Furthermore, print them as integers without rounding, i.e., 98.9 truncates to 98 (It’s Bob’s
policy). Lastly, grades with values below zero are not permitted. If a grade falls below zero, it
must be printed as zero.

Sample Input
3
75.0 10.0
42
55
57
3
80.0 5.0
23
90
27
0

Output Corresponding to Sample Input
63
79
81
76
77
85

 8

Problem 7
Josephus

The Josephus problem is the following game. There are n people, numbered 1 to n, sitting in a
circle. Starting at person 1, a hot potato is passed. After m passes, the person holding the hot
potato is eliminated, the circle closes ranks, and the game continues with the person who was
sitting after the eliminated person picking up the hot potato. The last remaining person wins.

The Josephus problem arose in first century A.D., in a cave on a mountain in Israel, where
Jewish zealots were besieged by Roman soldiers. The zealots voted to form a suicide pact rather
than surrender to the Romans. Josephus suggested the game, and rigged the game so he would
get the last lot. That is how we know about this game; in effect Josephus cheated!

Write a program that takes as input the number of people in the circle, n and the number of
passes, m. Both n and m must be positive integers less than 100. Display the sequence of people
removed. The final person printed is deemed the winner. Assume person 1 is the designated
first person, and always starts with the hot potato.

Input
The first line of input is an integer T, (2 ≤ T ≤ 20), representing the number of test cases.
This is followed by T lines, each containing a test case with two integers separated by a single
space. The first integer represents n, the number of people where (2 ≤ n ≤ 40), and the
second represents m, the number of passes where (0 ≤ m ≤ 50).

Output
Your program should print the sequence of n people removed. Each person should be separated
by a single space.

Sample Input
5
5 0
5 2
7 3
10 10
6 8

Output Corresponding to Sample Input
1 2 3 4 5
3 1 5 2 4
4 1 6 5 7 3 2
1 3 6 10 8 9 5 2 4 7
3 1 2 6 4 5

 9

Problem 8

Word Count

Microsoft Word now automatically displays the number of words in your documents on the
status bar at the bottom of the workspace.

You can even click on Words from the status bar to find the total characters and lines in your file
too. This is nothing new on the Linux operating system which has always included a word count
command called wc that displays the number of lines, words, and bytes in a text file to the
screen. These are each defined as follows.

• lines — total end of line characters in the file.
• words — total tokens in the file. A token starts and ends with a printable, non-whitespace

character. A whitespace character is a space, tab, or end of line character.
• bytes — total characters in the file including all whitespace characters.

You have been asked to implement the classic wc Linux system command to calculate the total
lines, words, and bytes as defined above.

Input
Your program should accept a single test case consisting of one or more strings of length n,
(2 ≤ n ≤ 80). Input is terminated by the end of file, and the last character in the file will
always be an end of line character.

Output
Output the total number of lines, words, and bytes exactly as shown below.

Sample Input
"Your time is limited, so don't waste it living someone else's life.
Have the courage to follow your heart and intuition.
They somehow already know what you truly want to become.
Everything else is secondary."
-Steve Jobs, 2005 Stanford Commencement

Output Corresponding to Sample Input
Lines = 5
Words = 40
Bytes = 250

