

2004 Consortium for Computing Sciences in Colleges

Programming Contest
Saturday, November 6th

 Wofford College
Spartanburg, South Carolina

There are six (6) problems in this packet. Each team member should have a copy of the
problems. These problems are NOT necessarily sorted by difficulty. Remember to
name your source files appropriately before submission.

Have Fun & Good Luck! ☺

Problem Name Input File Output File
Congratulations, It’s Twins! prog1_in.txt prog1_out.txt
The Laser Positioning System prog2_in.txt prog2_out.txt
Safe Cracker Code Cracker prog3_in.txt prog3_out.txt
Meet Me in Saint Louis prog4_in.txt prog4_out.txt
A Sweet Song is Taking Off prog5_in.txt prog5_out.txt
It’s War! prog6_in.txt prog6_out.txt

Congratulations, It’s Twins!
Input File: prog1_in.txt Output File: prog1_out.txt

A prime number is an integer greater than 1 such that the only integers that divide evenly
into it are itself and 1. Thus some prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, etc. It can
fairly easily be proven that there must exist infinitely many prime numbers.

A twin prime pair is two prime numbers that differ by two, such as 11 and 13, or 29 and
31. The only twin prime pair between 4 and 10 is (5,7), but between 10 and 20 we have
(11,13) and also (17,19). There are no twin prime pairs between 20 and 30.

It has been conjectured that there are infinitely many twin prime pairs (this is known as
the “Twin Prime Conjecture”), but it has yet to be proven.

Your task is to write a program that counts the number of twin prime pairs between two
given even positive integers.

Input
Input will consist of exactly 10 lines, each containing two even positive integers. No
integer input will be larger than 2147483646, and the difference between the two even
positive integers is no larger than 500.

Output
There must be one line of output for each line of input as shown in the format below.
Always output the smaller of the two inputs first.

Sample Input

4 10
10 20
20 30
10 30
100 200
2 4
122 134
200 400
4 2
98 2

Output Corresponding to Sample Input

The number of twin prime pairs between 4 and 10 is 1.
The number of twin prime pairs between 10 and 20 is 2.
The number of twin prime pairs between 20 and 30 is 0.
The number of twin prime pairs between 10 and 30 is 2.
The number of twin prime pairs between 100 and 200 is 7.
The number of twin prime pairs between 2 and 4 is 0.
The number of twin prime pairs between 122 and 134 is 0.
The number of twin prime pairs between 200 and 400 is 6.
The number of twin prime pairs between 2 and 4 is 0.
The number of twin prime pairs between 2 and 98 is 8.

The Laser Positioning System
Input File: prog2_in.txt Output File : prog2_out.txt

The LaserOptics Company, a firm specializing in optics engineering, has contracted you
to write a program that will calculate the angle with which a laser transmitter needs to be
positioned for effective data transmission using fiber optics. The program is required to
handle various transmitter and receiver elevations and also, multiple room dimensions.
The laser transmitter will be positioned on the left side of the room whose walls are
covered with glass panels. Due to power limitations, the transmitted light needs to be
bounced off the walls exactly twice (one at the bottom and the other on top) before
arriving at its target. The target is an optical receiver positioned at the right wall.
Although it may not be obvious in the figure below, the glass walls are perfectly designed
for light propagation such that the angle of incidence is equal to the angle of refraction. In
addition, the transmitter will always be oriented to point to the floor and thus, you may
assume that the first bounce of the light will always occur on the floor.

Input
Each line of input consists of two integer values representing the width and height of the
room, respectively and two floating point values representing the positions (measured
from the floor) of the transmitter and the receiver, respectively. The end of input, which
should not be processed, is indicated by two zeroes.

Output
For each input line, output the data set number together with the input data as shown.
This is followed on each line by a single tab, and then the calculated angular position
(represented by β in the figure shown above) of the transmitter measured in degrees. You
may assume that every input data set has a solution. The value of the angle must be
shown precisely, rounded to the nearest tenth of a degree.

Sample Input

O

22 7 6.0 3.54
22 7 6.0 6.73
10 6 3.0 4.86
18 12 8.0 2.0
0 0
utput Corresponding to Sample Input
Data set # 1: 22 7 6.0 3.54 Laser Transmitter position: 53.2 degrees
Data set # 2: 22 7 6.0 6.73 Laser transmitter position: 58.9 degrees
Data set # 3: 10 6 3.0 4.86 Laser transmitter position: 44.6 degrees
Data set # 4: 18 12 8.0 2.0 Laser transmitter position: 31.0 degrees

Safe Cracker Code Cracker

Input File: prog3_in.txt Output File: prog3_out.txt

Safe crackers Sal and Roscoe think they are so smart. They have cracked the code on a
number of safes with 4-directional combinations. For every safe they crack, they
remember the combination by constructing an n x n table with cell entries representing
numbers and directions on a safe. What they didn’t count on is your genius in cracking
their system.

For example, given this 4 x 4 table:

2D

1D 2L 2L

2R

2D OPEN 1U

1R

1R 1R 1U

2U

1L 3U 1L

You have discovered that the 16-instruction sequence to open the safe is: 1L 3U 2L
2D 1R 1R 1R 1U 1U 2L 1D 2D 1L 2U 2R OPEN. Having cracked their system,
you can now write a program to discover the combination of any safe Sal and Roscoe
have cracked.

Input
The first line of input indicates the number of test cases in the file. This is followed by
each test case. Each test case begins with n (1 <= n <= 8) on a line by itself, followed by
n rows, each containing n cell entries.

Output
For each test case, the output should consist of the n x n sequence of instructions to open
the safe, all on one line, with one space between every pair of instructions. Every square
must be visited.

Sample Input

O

2
4
2D 1D 2L 2L
2R 2D OPEN 1U
1R 1R 1R 1U
2U 1L 3U 1L
2
1R 1D
OPEN 1L
utput Corresponding to Sample Input

1L 3U 2L 2D 1R 1R 1R 1U 1U 2L 1D 2D 1L 2U 2R OPEN
1R 1D 1L OPEN

Meet Me in Saint Louis
Input File: prog4_in.txt Output File: prog4_out.txt

Ella Grace Bumgardner and her mother Allison Leigh frequently send each other e-mails.
Ever wary of interceptions and wishing to keep their correspondence private, they
encrypt their messages in two steps. After removing all nonalphabetic characters and
converting all letters to upper case, they: 1) replace each letter by the letter s positions
after it in the alphabet (1 <= s <= 25). We call this a shift by s and then, 2) divide the
result of step 1 into groups of m letters and reverse the letters in each group
(5 <= m <= 20). If the length of the message is not divisible by m, then the last k (less
than m) letters are reversed. For example, suppose s = 2 and m = 6. If the plaintext were

Meet me in St. Louis, Louis.

after removing unwanted characters and changing to upper case we get

MEETMEINSTLOUISLOUIS

We will call this the modified plaintext. We then shift each letter by 2 (Y would be
replaced with A and Z would be replaced by B, here), getting the intermediate result:

OGGVOGKPUVNQWKUNQWKU

And finally reverse every group of 6 letters:

GOVGGOQNVUPKWQNUKWUK

Note the last two letters made up the last reversed group. As is customary, we write the
result in groups of 5 letters. So the ciphertext would be:

GOVGG OQNVU PKWQN UKWUK

Alas, it's not so hard to find the values for s and m when the ciphertext is intercepted. In
fact it's even easier if you know a crib, which is a word in the modified plaintext. In the
above example, LOUIS would be a crib. Your job here is to find s and m when presented
with a ciphertext and a crib.

Input
Input will consist of multiple problem instances. The first line of input will contain a
positive integer indicating the number of problem instances. The input for each problem
will consist of multiple lines. The first line of input for a problem will contain the integer
n (20 <= n <= 500) which is equal to the number of characters in the ciphertext. The
following lines will contain the ciphertext, all upper case in groups of 5 letters separated
by a single space. (The last group of letters may contain fewer than 5 letters.) There will
be 10 groups of letters per line, except possibly for the last line of ciphertext. The
input line following the last line of ciphertext will contain the crib; a single word
consisting of between 4 and 10 (inclusive) upper case characters.

Output
Output will be two integers, s and m on a line, separated by a single space, indicating the
encryption key that produces the crib, where s is the shift and m is the reversed group
size. If there is more than one solution, output the one with smallest s. If there is more
than one with the same s, output the one with smallest m. If no such s and m exist, output
the message Crib is not encrypted.

Sample Input

4
83
FIQMF IISFN QMFIB EOPFH FNQMV PSFIU IZNGP UPEUS BFPEP PEPPE
PPEPN QMFIP EOPIS FIQMF IBSFN QMFBE OPI
RHONDA
105
VDBMN DQDGS LNQEM ZLZRZ RNGVX ZALNA TERZV CZDGD MZQHZ GENKK
KONSC DJHKC KKZAD RZAXZ SNMRH GBHGV RZVDG XZRNS XZKOS ZCNNF
SHFMH
BOMBAY
50
QFNWX YQFNW YSAQX FYNWY XQFNW SXYQF FXNYS AXYQF NASXY QFNAX
HEAVEN
20
GOVGG OQNVU PKWQN UKWUK
LOUIS

Output Corresponding to Sample Input

1 6
25 6
Crib is not encrypted.
2 6

A Sweet Song is Taking Off
Input File: prog5_in.txt Output File: prog5_out.txt

Delta Airlines has come a long way since their roots as the world’s first aerial crop
dusting corporation in Macon, GA in 1924. Since September 2001 though, they’ve faced
some tough economic times and are now seriously faced with the prospect of bankruptcy.
Last year, in an effort to try to get out of their economic bind, they began offering flyers
competitive low-fare amenities through a brand new company unit named Song. Song is
a no-frills airline with no first class service. But, it does offer free beverages, leather
seats, and even satellite television at every seat! One can only imagine what the two
brothers, Orville and Wilber Wright, would say if they could see how airplanes had
changed in just one hundred years since they made that historic first flight at Kitty Hawk,
NC in December 1903.

Your job is to write a data processing program for the Song Flight 4474 from Atlanta to
Fort Lauderdale which began in early October. Flight 4474 is an Aerospatiale regional
jet with 15 rows, 4 passengers to a row that takes off daily at 9:05 A.M. and arrives at
10:55 A.M. Rows are numbered 1 through 15, and individual seats on each row are
labeled A, B, C, and D. Seats A and D provide a window, while B and C are on the aisle.
Your program will read in data associated with a flight exactly one week from today.
Seats at this date are now being taken on a space available basis, and are assigned starting
from the first seat at the front of the plane. Passenger requests for up to four seats
together on a row are given where available. Your program will read in all seats already
assigned as well as the passenger information associated with each seat, and one or more
batch reservations that have come in recently. Your program will print out the seat map
showing all assigned and available seats after all new requests have been processed. This
is followed by the results of each requested reservation.

Input
Your program will first read in all seats already assigned. All seat assignments that have
been made are stored one per line in the following format using three tokens separated by
a single tab. The first token, xxx, represents a three character seat number. The second
token is a name made up of 1 more characters, and the third token is a unique three digit
id. A seat assignment of LAST represents the end of reservations already made and
should not be processed. This is followed by a single positive integer m representing the
number of batch reservation requests that have come in for processing. Each batch
reservation request r1 r2…rm contains a single positive integer n ranging from 1 to 4
indicating the number of seats needed. This is followed by n lines with a name and id
together on a single line separated by a tab.

Output
Include headings on the first two lines with the flight information shown. A blank line
should appear before and after the seat map, as well as for the plane’s aisle between rows
B and C. Use E to indicate an empty seat and X a reserved seat. Use a tabular format
exactly as shown below. This is followed by the results of each batch reservation
request. If a request cannot be filled (i.e., the total number of seats requested is greater

than the number available on the plane), simply print request denied – not
enough seats available and ignore all lines with a name and id in the input file
for that reservation. (You could have a confirmed reservation for a small number of seats
after a request for a larger number of seats on an almost full plane is denied.) Use the
format shown below for confirming a reservation with a comma and space following
each confirmed id and seat assigned in the order processed.

Sample Input

08A Smith,C 532
08B Swift,T 004
08C Sumner,M 047
10A Johnston,A 444
LAST
2
1
Willis,D 738
4
Brown,C 388
Barger,J 112
Thomas,S 476
Thomas,R 888

Output Corresponding to Sample Input
Song Flight 4474 from ATL to FLL
Departs 9:05AM 13NOV, Arrives 10:55AM 13NOV, 0 Stop

 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
D E X E E E E E E E E E E E E E
C E X E E E E E X E E E E E E E

B E X E E E E E X E E E E E E E
A X X E E E E E X E X E E E E E

id 738 confirmed in 01A
id 388, id 112, id 476, id 888 confirmed in 02A, 02B, 02C, 02D

It’s WAR!

Input File: prog6_in.txt Output File: prog6_out.txt

There are numerous classic card games everyone learns as a child. Old Maid and Go
Fish rank among the most well known. Another classic is the game of War. It has very
simple (and rather varied) rules. Here is an example of what the rules may be:

1. Deal out the cards evenly among the players. We start by dealing to player 1,
and giving each player one card in turn. We don't give player 1 a second card
until all players have had one card.

2. Each player turns over their top card and places it in the middle.
3. The player with the highest valued card wins both cards. (Aces considered high)

a. If there is a tie, the tied players remove their next card and place it face
down.

b. Then they turn the next card over and place it on the top of that card.
c. High card wins.
d. Go to step 3a if there is still a tie.
e. If one of the players runs out of cards, he loses the tie breaker and all of

the cards he played during the tie breaker goes to the tie breaker winner.
f. If all players involved in the tie run out of cards, they are all out of the

game and the cards from the hand are discarded (i.e. nobody gets them).
4. Go to step 2

The game is over when all players are out of the cards dealt them. The victor is the
player with the most cards.

Assume you are given a pre-shuffled deck of cards that are ready to be dealt as well as
the number of players. Deal out the cards and play the game, then report the number of
cards that each player won. The cards are to be dealt so that the first card a player
receives is the last card the player uses. You can always assume there are more cards
than players, and that once a card is won by someone it is out of the game.

Be warned, I have a very old deck of cards so some cards may be missing and sometimes
I mix decks.

Input
The information can be read from the input file in the following format:
<# of games>
<# of players for a game>
<suit S, C, H, D><value 1-13 : 1 is ace,11,12,13 is jack, queen,
king>
…
<suit><value>
JOKER

The JOKER simply indicates the bottom of the deck and signifies the end of dealing. It is
not used in the game.

Output
For output, print the number of the game followed by each of the player numbers and the
number of cards won as shown in the sample output. A blank line should follow each
game (including the last one). Players are numbered by the way the deck is dealt (e.g.
player 1 is the player who receives the first card in the deal.)

Sample Input

O

2
2
S4
H1
C13
D10
C2
S11
H8
D8
JOKER
4
S3
C4
D10
C12
S5
C13
S4
H5
H7
S2
H3
D12
H1
C9
D1
S1
JOKER
utput Corresponding to Sample Input

Game 1
Player 1 : 6 cards
Player 2 : 2 cards

Game 2
Player 1 : 0 cards
Player 2 : 2 cards
Player 3 : 2 cards
Player 4 : 0 cards

	Input
	Output
	Output Corresponding to Sample Input

